Mister Exam

Other calculators

Integral of ∫(2x+6)^5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0              
  /              
 |               
 |           5   
 |  (2*x + 6)  dx
 |               
/                
0                
00(2x+6)5dx\int\limits_{0}^{0} \left(2 x + 6\right)^{5}\, dx
Integral((2*x + 6)^5, (x, 0, 0))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2x+6u = 2 x + 6.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      u52du\int \frac{u^{5}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u5du=u5du2\int u^{5}\, du = \frac{\int u^{5}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u5du=u66\int u^{5}\, du = \frac{u^{6}}{6}

        So, the result is: u612\frac{u^{6}}{12}

      Now substitute uu back in:

      (2x+6)612\frac{\left(2 x + 6\right)^{6}}{12}

    Method #2

    1. Rewrite the integrand:

      (2x+6)5=32x5+480x4+2880x3+8640x2+12960x+7776\left(2 x + 6\right)^{5} = 32 x^{5} + 480 x^{4} + 2880 x^{3} + 8640 x^{2} + 12960 x + 7776

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        32x5dx=32x5dx\int 32 x^{5}\, dx = 32 \int x^{5}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x5dx=x66\int x^{5}\, dx = \frac{x^{6}}{6}

        So, the result is: 16x63\frac{16 x^{6}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        480x4dx=480x4dx\int 480 x^{4}\, dx = 480 \int x^{4}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

        So, the result is: 96x596 x^{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2880x3dx=2880x3dx\int 2880 x^{3}\, dx = 2880 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: 720x4720 x^{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        8640x2dx=8640x2dx\int 8640 x^{2}\, dx = 8640 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 2880x32880 x^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        12960xdx=12960xdx\int 12960 x\, dx = 12960 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 6480x26480 x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        7776dx=7776x\int 7776\, dx = 7776 x

      The result is: 16x63+96x5+720x4+2880x3+6480x2+7776x\frac{16 x^{6}}{3} + 96 x^{5} + 720 x^{4} + 2880 x^{3} + 6480 x^{2} + 7776 x

  2. Now simplify:

    16(x+3)63\frac{16 \left(x + 3\right)^{6}}{3}

  3. Add the constant of integration:

    16(x+3)63+constant\frac{16 \left(x + 3\right)^{6}}{3}+ \mathrm{constant}


The answer is:

16(x+3)63+constant\frac{16 \left(x + 3\right)^{6}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              6
 |          5          (2*x + 6) 
 | (2*x + 6)  dx = C + ----------
 |                         12    
/                                
(2x+6)5dx=C+(2x+6)612\int \left(2 x + 6\right)^{5}\, dx = C + \frac{\left(2 x + 6\right)^{6}}{12}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010000
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.