Mister Exam

Other calculators

Integral of 1/((x-1)*ln(2*x+3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                        
  /                        
 |                         
 |           1             
 |  -------------------- dx
 |  (x - 1)*log(2*x + 3)   
 |                         
/                          
2                          
$$\int\limits_{2}^{\infty} \frac{1}{\left(x - 1\right) \log{\left(2 x + 3 \right)}}\, dx$$
Integral(1/((x - 1)*log(2*x + 3)), (x, 2, oo))
The answer (Indefinite) [src]
  /                                /                        
 |                                |                         
 |          1                     |           1             
 | -------------------- dx = C +  | --------------------- dx
 | (x - 1)*log(2*x + 3)           | (-1 + x)*log(3 + 2*x)   
 |                                |                         
/                                /                          
$$\int \frac{1}{\left(x - 1\right) \log{\left(2 x + 3 \right)}}\, dx = C + \int \frac{1}{\left(x - 1\right) \log{\left(2 x + 3 \right)}}\, dx$$
The answer [src]
 oo                         
  /                         
 |                          
 |            1             
 |  --------------------- dx
 |  (-1 + x)*log(3 + 2*x)   
 |                          
/                           
2                           
$$\int\limits_{2}^{\infty} \frac{1}{\left(x - 1\right) \log{\left(2 x + 3 \right)}}\, dx$$
=
=
 oo                         
  /                         
 |                          
 |            1             
 |  --------------------- dx
 |  (-1 + x)*log(3 + 2*x)   
 |                          
/                           
2                           
$$\int\limits_{2}^{\infty} \frac{1}{\left(x - 1\right) \log{\left(2 x + 3 \right)}}\, dx$$
Integral(1/((-1 + x)*log(3 + 2*x)), (x, 2, oo))

    Use the examples entering the upper and lower limits of integration.