Mister Exam

Other calculators

Integral of 1/(x*ln^2(x)+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |       2          
 |  x*log (x) + 3   
 |                  
/                   
1                   
$$\int\limits_{1}^{\infty} \frac{1}{x \log{\left(x \right)}^{2} + 3}\, dx$$
Integral(1/(x*log(x)^2 + 3), (x, 1, oo))
The answer (Indefinite) [src]
  /                         /                
 |                         |                 
 |       1                 |       1         
 | ------------- dx = C +  | ------------- dx
 |      2                  |          2      
 | x*log (x) + 3           | 3 + x*log (x)   
 |                         |                 
/                         /                  
$$\int \frac{1}{x \log{\left(x \right)}^{2} + 3}\, dx = C + \int \frac{1}{x \log{\left(x \right)}^{2} + 3}\, dx$$
The answer [src]
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |           2      
 |  3 + x*log (x)   
 |                  
/                   
1                   
$$\int\limits_{1}^{\infty} \frac{1}{x \log{\left(x \right)}^{2} + 3}\, dx$$
=
=
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |           2      
 |  3 + x*log (x)   
 |                  
/                   
1                   
$$\int\limits_{1}^{\infty} \frac{1}{x \log{\left(x \right)}^{2} + 3}\, dx$$
Integral(1/(3 + x*log(x)^2), (x, 1, oo))

    Use the examples entering the upper and lower limits of integration.