-1 + E / | | 2 | log (x + 3) dx | / 0
Integral(log(x + 3)^2, (x, 0, -1 + E))
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 2 2 | log (x + 3) dx = 6 + C + 2*x + log (x + 3)*(x + 3) - 2*(x + 3)*log(x + 3) | /
2 2 -2 - 6*log(2 + E) - 3*log (3) + 2*E + 6*log(3) + log (2 + E)*(2 + E) - 2*(-1 + E)*log(2 + E)
=
2 2 -2 - 6*log(2 + E) - 3*log (3) + 2*E + 6*log(3) + log (2 + E)*(2 + E) - 2*(-1 + E)*log(2 + E)
-2 - 6*log(2 + E) - 3*log(3)^2 + 2*E + 6*log(3) + log(2 + E)^2*(2 + E) - 2*(-1 + E)*log(2 + E)
Use the examples entering the upper and lower limits of integration.