Integral of ln^2(x+3) dx
The solution
Detail solution
-
Let u=log(x+3).
Then let du=x+3dx and substitute du:
∫u2eudu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=eu.
Then du(u)=2u.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=2u and let dv(u)=eu.
Then du(u)=2.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2x+(x+3)log(x+3)2−2(x+3)log(x+3)+6
-
Now simplify:
2x+(x+3)log(x+3)2−2(x+3)log(x+3)+6
-
Add the constant of integration:
2x+(x+3)log(x+3)2−2(x+3)log(x+3)+6+constant
The answer is:
2x+(x+3)log(x+3)2−2(x+3)log(x+3)+6+constant
The answer (Indefinite)
[src]
/
|
| 2 2
| log (x + 3) dx = 6 + C + 2*x + log (x + 3)*(x + 3) - 2*(x + 3)*log(x + 3)
|
/
∫log(x+3)2dx=C+2x+(x+3)log(x+3)2−2(x+3)log(x+3)+6
The graph
2 2
-2 - 6*log(2 + E) - 3*log (3) + 2*E + 6*log(3) + log (2 + E)*(2 + E) - 2*(-1 + E)*log(2 + E)
−6log(2+e)−2(−1+e)log(2+e)−3log(3)2−2+2e+6log(3)+(2+e)log(2+e)2
=
2 2
-2 - 6*log(2 + E) - 3*log (3) + 2*E + 6*log(3) + log (2 + E)*(2 + E) - 2*(-1 + E)*log(2 + E)
−6log(2+e)−2(−1+e)log(2+e)−3log(3)2−2+2e+6log(3)+(2+e)log(2+e)2
-2 - 6*log(2 + E) - 3*log(3)^2 + 2*E + 6*log(3) + log(2 + E)^2*(2 + E) - 2*(-1 + E)*log(2 + E)
Use the examples entering the upper and lower limits of integration.