Mister Exam

Other calculators

Integral of ln^2(x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -1 + E              
    /                
   |                 
   |      2          
   |   log (x + 3) dx
   |                 
  /                  
  0                  
01+elog(x+3)2dx\int\limits_{0}^{-1 + e} \log{\left(x + 3 \right)}^{2}\, dx
Integral(log(x + 3)^2, (x, 0, -1 + E))
Detail solution
  1. Let u=log(x+3)u = \log{\left(x + 3 \right)}.

    Then let du=dxx+3du = \frac{dx}{x + 3} and substitute dudu:

    u2eudu\int u^{2} e^{u}\, du

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(u)=u2u{\left(u \right)} = u^{2} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

      Then du(u)=2u\operatorname{du}{\left(u \right)} = 2 u.

      To find v(u)v{\left(u \right)}:

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      Now evaluate the sub-integral.

    2. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(u)=2uu{\left(u \right)} = 2 u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

      Then du(u)=2\operatorname{du}{\left(u \right)} = 2.

      To find v(u)v{\left(u \right)}:

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      2eudu=2eudu\int 2 e^{u}\, du = 2 \int e^{u}\, du

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      So, the result is: 2eu2 e^{u}

    Now substitute uu back in:

    2x+(x+3)log(x+3)22(x+3)log(x+3)+62 x + \left(x + 3\right) \log{\left(x + 3 \right)}^{2} - 2 \left(x + 3\right) \log{\left(x + 3 \right)} + 6

  2. Now simplify:

    2x+(x+3)log(x+3)22(x+3)log(x+3)+62 x + \left(x + 3\right) \log{\left(x + 3 \right)}^{2} - 2 \left(x + 3\right) \log{\left(x + 3 \right)} + 6

  3. Add the constant of integration:

    2x+(x+3)log(x+3)22(x+3)log(x+3)+6+constant2 x + \left(x + 3\right) \log{\left(x + 3 \right)}^{2} - 2 \left(x + 3\right) \log{\left(x + 3 \right)} + 6+ \mathrm{constant}


The answer is:

2x+(x+3)log(x+3)22(x+3)log(x+3)+6+constant2 x + \left(x + 3\right) \log{\left(x + 3 \right)}^{2} - 2 \left(x + 3\right) \log{\left(x + 3 \right)} + 6+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                         
 |                                                                          
 |    2                              2                                      
 | log (x + 3) dx = 6 + C + 2*x + log (x + 3)*(x + 3) - 2*(x + 3)*log(x + 3)
 |                                                                          
/                                                                           
log(x+3)2dx=C+2x+(x+3)log(x+3)22(x+3)log(x+3)+6\int \log{\left(x + 3 \right)}^{2}\, dx = C + 2 x + \left(x + 3\right) \log{\left(x + 3 \right)}^{2} - 2 \left(x + 3\right) \log{\left(x + 3 \right)} + 6
The graph
0.00.20.40.60.81.01.21.41.65-5
The answer [src]
                         2                          2                                       
-2 - 6*log(2 + E) - 3*log (3) + 2*E + 6*log(3) + log (2 + E)*(2 + E) - 2*(-1 + E)*log(2 + E)
6log(2+e)2(1+e)log(2+e)3log(3)22+2e+6log(3)+(2+e)log(2+e)2- 6 \log{\left(2 + e \right)} - 2 \left(-1 + e\right) \log{\left(2 + e \right)} - 3 \log{\left(3 \right)}^{2} - 2 + 2 e + 6 \log{\left(3 \right)} + \left(2 + e\right) \log{\left(2 + e \right)}^{2}
=
=
                         2                          2                                       
-2 - 6*log(2 + E) - 3*log (3) + 2*E + 6*log(3) + log (2 + E)*(2 + E) - 2*(-1 + E)*log(2 + E)
6log(2+e)2(1+e)log(2+e)3log(3)22+2e+6log(3)+(2+e)log(2+e)2- 6 \log{\left(2 + e \right)} - 2 \left(-1 + e\right) \log{\left(2 + e \right)} - 3 \log{\left(3 \right)}^{2} - 2 + 2 e + 6 \log{\left(3 \right)} + \left(2 + e\right) \log{\left(2 + e \right)}^{2}
-2 - 6*log(2 + E) - 3*log(3)^2 + 2*E + 6*log(3) + log(2 + E)^2*(2 + E) - 2*(-1 + E)*log(2 + E)
Numerical answer [src]
3.12389700337105
3.12389700337105

    Use the examples entering the upper and lower limits of integration.