Mister Exam

Other calculators

Integral of ln^2(x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -1 + E              
    /                
   |                 
   |      2          
   |   log (x + 3) dx
   |                 
  /                  
  0                  
$$\int\limits_{0}^{-1 + e} \log{\left(x + 3 \right)}^{2}\, dx$$
Integral(log(x + 3)^2, (x, 0, -1 + E))
Detail solution
  1. Let .

    Then let and substitute :

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of the exponential function is itself.

      Now evaluate the sub-integral.

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of the exponential function is itself.

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of the exponential function is itself.

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                         
 |                                                                          
 |    2                              2                                      
 | log (x + 3) dx = 6 + C + 2*x + log (x + 3)*(x + 3) - 2*(x + 3)*log(x + 3)
 |                                                                          
/                                                                           
$$\int \log{\left(x + 3 \right)}^{2}\, dx = C + 2 x + \left(x + 3\right) \log{\left(x + 3 \right)}^{2} - 2 \left(x + 3\right) \log{\left(x + 3 \right)} + 6$$
The graph
The answer [src]
                         2                          2                                       
-2 - 6*log(2 + E) - 3*log (3) + 2*E + 6*log(3) + log (2 + E)*(2 + E) - 2*(-1 + E)*log(2 + E)
$$- 6 \log{\left(2 + e \right)} - 2 \left(-1 + e\right) \log{\left(2 + e \right)} - 3 \log{\left(3 \right)}^{2} - 2 + 2 e + 6 \log{\left(3 \right)} + \left(2 + e\right) \log{\left(2 + e \right)}^{2}$$
=
=
                         2                          2                                       
-2 - 6*log(2 + E) - 3*log (3) + 2*E + 6*log(3) + log (2 + E)*(2 + E) - 2*(-1 + E)*log(2 + E)
$$- 6 \log{\left(2 + e \right)} - 2 \left(-1 + e\right) \log{\left(2 + e \right)} - 3 \log{\left(3 \right)}^{2} - 2 + 2 e + 6 \log{\left(3 \right)} + \left(2 + e\right) \log{\left(2 + e \right)}^{2}$$
-2 - 6*log(2 + E) - 3*log(3)^2 + 2*E + 6*log(3) + log(2 + E)^2*(2 + E) - 2*(-1 + E)*log(2 + E)
Numerical answer [src]
3.12389700337105
3.12389700337105

    Use the examples entering the upper and lower limits of integration.