Mister Exam

Integral of sin(8x)cos(6x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(8*x)*cos(6*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(8 x \right)} \cos{\left(6 x \right)}\, dx$$
Integral(sin(8*x)*cos(6*x), (x, 0, 1))
The graph
The answer [src]
2   3*sin(6)*sin(8)   2*cos(6)*cos(8)
- - --------------- - ---------------
7          14                7       
$$- \frac{2 \cos{\left(6 \right)} \cos{\left(8 \right)}}{7} - \frac{3 \sin{\left(6 \right)} \sin{\left(8 \right)}}{14} + \frac{2}{7}$$
=
=
2   3*sin(6)*sin(8)   2*cos(6)*cos(8)
- - --------------- - ---------------
7          14                7       
$$- \frac{2 \cos{\left(6 \right)} \cos{\left(8 \right)}}{7} - \frac{3 \sin{\left(6 \right)} \sin{\left(8 \right)}}{14} + \frac{2}{7}$$
2/7 - 3*sin(6)*sin(8)/14 - 2*cos(6)*cos(8)/7
Numerical answer [src]
0.38486752277222
0.38486752277222
The graph
Integral of sin(8x)cos(6x) dx

    Use the examples entering the upper and lower limits of integration.