Mister Exam

Integral of 8cos(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  8*cos(4*x) dx
 |               
/                
0                
018cos(4x)dx\int\limits_{0}^{1} 8 \cos{\left(4 x \right)}\, dx
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    8cos(4x)dx=8cos(4x)dx\int 8 \cos{\left(4 x \right)}\, dx = 8 \int \cos{\left(4 x \right)}\, dx

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

      Now substitute uu back in:

      sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

    So, the result is: 2sin(4x)2 \sin{\left(4 x \right)}

  2. Add the constant of integration:

    2sin(4x)+constant2 \sin{\left(4 x \right)}+ \mathrm{constant}


The answer is:

2sin(4x)+constant2 \sin{\left(4 x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                               
 | 8*cos(4*x) dx = C + 2*sin(4*x)
 |                               
/                                
2sin(4x)2\,\sin \left(4\,x\right)
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2020
The answer [src]
2*sin(4)
2sin42\,\sin 4
=
=
2*sin(4)
2sin(4)2 \sin{\left(4 \right)}
Numerical answer [src]
-1.51360499061586
-1.51360499061586
The graph
Integral of 8cos(4x) dx

    Use the examples entering the upper and lower limits of integration.