Integral of 8cos(4x) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(4x)dx=8∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 2sin(4x)
-
Add the constant of integration:
2sin(4x)+constant
The answer is:
2sin(4x)+constant
The answer (Indefinite)
[src]
/
|
| 8*cos(4*x) dx = C + 2*sin(4*x)
|
/
2sin(4x)
The graph
=
2sin(4)
Use the examples entering the upper and lower limits of integration.