Mister Exam

Other calculators

Integral of 8*cos(4x-12) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  8*cos(4*x - 12) dx
 |                    
/                     
0                     
018cos(4x12)dx\int\limits_{0}^{1} 8 \cos{\left(4 x - 12 \right)}\, dx
Integral(8*cos(4*x - 12), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    8cos(4x12)dx=8cos(4x12)dx\int 8 \cos{\left(4 x - 12 \right)}\, dx = 8 \int \cos{\left(4 x - 12 \right)}\, dx

    1. Let u=4x12u = 4 x - 12.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

      Now substitute uu back in:

      sin(4x12)4\frac{\sin{\left(4 x - 12 \right)}}{4}

    So, the result is: 2sin(4x12)2 \sin{\left(4 x - 12 \right)}

  2. Now simplify:

    2sin(4x12)2 \sin{\left(4 x - 12 \right)}

  3. Add the constant of integration:

    2sin(4x12)+constant2 \sin{\left(4 x - 12 \right)}+ \mathrm{constant}


The answer is:

2sin(4x12)+constant2 \sin{\left(4 x - 12 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                        
 |                                         
 | 8*cos(4*x - 12) dx = C + 2*sin(4*x - 12)
 |                                         
/                                          
8cos(4x12)dx=C+2sin(4x12)\int 8 \cos{\left(4 x - 12 \right)}\, dx = C + 2 \sin{\left(4 x - 12 \right)}
The graph
0.003.000.250.500.751.001.251.501.752.002.252.502.75-2020
The answer [src]
-2*sin(8) + 2*sin(12)
2sin(8)+2sin(12)- 2 \sin{\left(8 \right)} + 2 \sin{\left(12 \right)}
=
=
-2*sin(8) + 2*sin(12)
2sin(8)+2sin(12)- 2 \sin{\left(8 \right)} + 2 \sin{\left(12 \right)}
-2*sin(8) + 2*sin(12)
Numerical answer [src]
-3.05186232924763
-3.05186232924763

    Use the examples entering the upper and lower limits of integration.