Integral of 8*cos(4x-12) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(4x−12)dx=8∫cos(4x−12)dx
-
Let u=4x−12.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x−12)
So, the result is: 2sin(4x−12)
-
Now simplify:
2sin(4x−12)
-
Add the constant of integration:
2sin(4x−12)+constant
The answer is:
2sin(4x−12)+constant
The answer (Indefinite)
[src]
/
|
| 8*cos(4*x - 12) dx = C + 2*sin(4*x - 12)
|
/
∫8cos(4x−12)dx=C+2sin(4x−12)
The graph
−2sin(8)+2sin(12)
=
−2sin(8)+2sin(12)
Use the examples entering the upper and lower limits of integration.