Mister Exam

Other calculators


(x^6-7x)^4dx

Integral of (x^6-7x)^4dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                 
  /                 
 |                  
 |            4     
 |  / 6      \      
 |  \x  - 7*x/ *1 dx
 |                  
/                   
0                   
03(x67x)41dx\int\limits_{0}^{3} \left(x^{6} - 7 x\right)^{4} \cdot 1\, dx
Integral((x^6 - 7*x)^4*1, (x, 0, 3))
Detail solution
  1. Rewrite the integrand:

    (x67x)41=x2428x19+294x141372x9+2401x4\left(x^{6} - 7 x\right)^{4} \cdot 1 = x^{24} - 28 x^{19} + 294 x^{14} - 1372 x^{9} + 2401 x^{4}

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x24dx=x2525\int x^{24}\, dx = \frac{x^{25}}{25}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (28x19)dx=28x19dx\int \left(- 28 x^{19}\right)\, dx = - 28 \int x^{19}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x19dx=x2020\int x^{19}\, dx = \frac{x^{20}}{20}

      So, the result is: 7x205- \frac{7 x^{20}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      294x14dx=294x14dx\int 294 x^{14}\, dx = 294 \int x^{14}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x14dx=x1515\int x^{14}\, dx = \frac{x^{15}}{15}

      So, the result is: 98x155\frac{98 x^{15}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1372x9)dx=1372x9dx\int \left(- 1372 x^{9}\right)\, dx = - 1372 \int x^{9}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x9dx=x1010\int x^{9}\, dx = \frac{x^{10}}{10}

      So, the result is: 686x105- \frac{686 x^{10}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      2401x4dx=2401x4dx\int 2401 x^{4}\, dx = 2401 \int x^{4}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

      So, the result is: 2401x55\frac{2401 x^{5}}{5}

    The result is: x25257x205+98x155686x105+2401x55\frac{x^{25}}{25} - \frac{7 x^{20}}{5} + \frac{98 x^{15}}{5} - \frac{686 x^{10}}{5} + \frac{2401 x^{5}}{5}

  3. Now simplify:

    x5(x2035x15+490x103430x5+12005)25\frac{x^{5} \left(x^{20} - 35 x^{15} + 490 x^{10} - 3430 x^{5} + 12005\right)}{25}

  4. Add the constant of integration:

    x5(x2035x15+490x103430x5+12005)25+constant\frac{x^{5} \left(x^{20} - 35 x^{15} + 490 x^{10} - 3430 x^{5} + 12005\right)}{25}+ \mathrm{constant}


The answer is:

x5(x2035x15+490x103430x5+12005)25+constant\frac{x^{5} \left(x^{20} - 35 x^{15} + 490 x^{10} - 3430 x^{5} + 12005\right)}{25}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                               
 |                                                                
 |           4                 10      20    25       15         5
 | / 6      \             686*x     7*x     x     98*x     2401*x 
 | \x  - 7*x/ *1 dx = C - ------- - ----- + --- + ------ + -------
 |                           5        5      25     5         5   
/                                                                 
(x67x)41dx=C+x25257x205+98x155686x105+2401x55\int \left(x^{6} - 7 x\right)^{4} \cdot 1\, dx = C + \frac{x^{25}}{25} - \frac{7 x^{20}}{5} + \frac{98 x^{15}}{5} - \frac{686 x^{10}}{5} + \frac{2401 x^{5}}{5}
The graph
0.003.000.250.500.751.001.251.501.752.002.252.502.750500000000000
The answer [src]
732082498983
------------
     25     
73208249898325\frac{732082498983}{25}
=
=
732082498983
------------
     25     
73208249898325\frac{732082498983}{25}
Numerical answer [src]
29283299959.32
29283299959.32
The graph
Integral of (x^6-7x)^4dx dx

    Use the examples entering the upper and lower limits of integration.