Integral of x*log3(x) dx
The solution
Detail solution
-
Let u=log(x).
Then let du=xdx and substitute log(3)du:
∫log(3)ue2udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫ue2udu=log(3)∫ue2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
So, the result is: log(3)2ue2u−4e2u
Now substitute u back in:
log(3)2x2log(x)−4x2
-
Now simplify:
4log(3)x2(2log(x)−1)
-
Add the constant of integration:
4log(3)x2(2log(x)−1)+constant
The answer is:
4log(3)x2(2log(x)−1)+constant
The answer (Indefinite)
[src]
2 2
/ x x *log(x)
| - -- + ---------
| log(x) 4 2
| x*------ dx = C + ----------------
| log(3) log(3)
|
/
∫xlog(3)log(x)dx=C+log(3)2x2log(x)−4x2
The graph
−4log(3)1
=
−4log(3)1
Use the examples entering the upper and lower limits of integration.