Mister Exam

Integral of x*log3(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |    log(x)   
 |  x*------ dx
 |    log(3)   
 |             
/              
0              
01xlog(x)log(3)dx\int\limits_{0}^{1} x \frac{\log{\left(x \right)}}{\log{\left(3 \right)}}\, dx
Integral(x*(log(x)/log(3)), (x, 0, 1))
Detail solution
  1. Let u=log(x)u = \log{\left(x \right)}.

    Then let du=dxxdu = \frac{dx}{x} and substitute dulog(3)\frac{du}{\log{\left(3 \right)}}:

    ue2ulog(3)du\int \frac{u e^{2 u}}{\log{\left(3 \right)}}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      ue2udu=ue2udulog(3)\int u e^{2 u}\, du = \frac{\int u e^{2 u}\, du}{\log{\left(3 \right)}}

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

        Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

        To find v(u)v{\left(u \right)}:

        1. Let u=2uu = 2 u.

          Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

          eu2du\int \frac{e^{u}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            False\text{False}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2u2\frac{e^{2 u}}{2}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

        1. Let u=2uu = 2 u.

          Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

          eu2du\int \frac{e^{u}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            False\text{False}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2u2\frac{e^{2 u}}{2}

        So, the result is: e2u4\frac{e^{2 u}}{4}

      So, the result is: ue2u2e2u4log(3)\frac{\frac{u e^{2 u}}{2} - \frac{e^{2 u}}{4}}{\log{\left(3 \right)}}

    Now substitute uu back in:

    x2log(x)2x24log(3)\frac{\frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4}}{\log{\left(3 \right)}}

  2. Now simplify:

    x2(2log(x)1)4log(3)\frac{x^{2} \left(2 \log{\left(x \right)} - 1\right)}{4 \log{\left(3 \right)}}

  3. Add the constant of integration:

    x2(2log(x)1)4log(3)+constant\frac{x^{2} \left(2 \log{\left(x \right)} - 1\right)}{4 \log{\left(3 \right)}}+ \mathrm{constant}


The answer is:

x2(2log(x)1)4log(3)+constant\frac{x^{2} \left(2 \log{\left(x \right)} - 1\right)}{4 \log{\left(3 \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
                        2    2       
  /                    x    x *log(x)
 |                   - -- + ---------
 |   log(x)            4        2    
 | x*------ dx = C + ----------------
 |   log(3)               log(3)     
 |                                   
/                                    
xlog(x)log(3)dx=C+x2log(x)2x24log(3)\int x \frac{\log{\left(x \right)}}{\log{\left(3 \right)}}\, dx = C + \frac{\frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4}}{\log{\left(3 \right)}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
  -1    
--------
4*log(3)
14log(3)- \frac{1}{4 \log{\left(3 \right)}}
=
=
  -1    
--------
4*log(3)
14log(3)- \frac{1}{4 \log{\left(3 \right)}}
-1/(4*log(3))
Numerical answer [src]
-0.227559806656709
-0.227559806656709
The graph
Integral of x*log3(x) dx

    Use the examples entering the upper and lower limits of integration.