Integral of п/0^8cos4xdx dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫0πcos(4x)dx=∞~∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: ∞~sin(4x)
-
Add the constant of integration:
∞~sin(4x)+constant
The answer is:
∞~sin(4x)+constant
The answer (Indefinite)
[src]
/
|
| pi
| --*cos(4*x) dx = C + zoo*sin(4*x)
| 0
|
/
∫0πcos(4x)dx=C+∞~sin(4x)
The graph
1
/
|
zoo* | cos(4*x) dx
|
/
0
∞~0∫1cos(4x)dx
=
1
/
|
zoo* | cos(4*x) dx
|
/
0
∞~0∫1cos(4x)dx
±oo*Integral(cos(4*x), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.