Mister Exam

Other calculators

Integral of п/0^8cos4xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  pi            
 |  --*cos(4*x) dx
 |  0             
 |                
/                 
0                 
01π0cos(4x)dx\int\limits_{0}^{1} \frac{\pi}{0} \cos{\left(4 x \right)}\, dx
Integral((pi/0)*cos(4*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    π0cos(4x)dx=~cos(4x)dx\int \frac{\pi}{0} \cos{\left(4 x \right)}\, dx = \tilde{\infty} \int \cos{\left(4 x \right)}\, dx

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

      Now substitute uu back in:

      sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

    So, the result is: ~sin(4x)\tilde{\infty} \sin{\left(4 x \right)}

  2. Add the constant of integration:

    ~sin(4x)+constant\tilde{\infty} \sin{\left(4 x \right)}+ \mathrm{constant}


The answer is:

~sin(4x)+constant\tilde{\infty} \sin{\left(4 x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                                  
 | pi                               
 | --*cos(4*x) dx = C + zoo*sin(4*x)
 | 0                                
 |                                  
/                                   
π0cos(4x)dx=C+~sin(4x)\int \frac{\pi}{0} \cos{\left(4 x \right)}\, dx = C + \tilde{\infty} \sin{\left(4 x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.02-0.02
The answer [src]
      1            
      /            
     |             
zoo* |  cos(4*x) dx
     |             
    /              
    0              
~01cos(4x)dx\tilde{\infty} \int\limits_{0}^{1} \cos{\left(4 x \right)}\, dx
=
=
      1            
      /            
     |             
zoo* |  cos(4*x) dx
     |             
    /              
    0              
~01cos(4x)dx\tilde{\infty} \int\limits_{0}^{1} \cos{\left(4 x \right)}\, dx
±oo*Integral(cos(4*x), (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.