Mister Exam

Other calculators

Integral of п/0^8cos4xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  pi            
 |  --*cos(4*x) dx
 |  0             
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\pi}{0} \cos{\left(4 x \right)}\, dx$$
Integral((pi/0)*cos(4*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                                  
 | pi                               
 | --*cos(4*x) dx = C + zoo*sin(4*x)
 | 0                                
 |                                  
/                                   
$$\int \frac{\pi}{0} \cos{\left(4 x \right)}\, dx = C + \tilde{\infty} \sin{\left(4 x \right)}$$
The graph
The answer [src]
      1            
      /            
     |             
zoo* |  cos(4*x) dx
     |             
    /              
    0              
$$\tilde{\infty} \int\limits_{0}^{1} \cos{\left(4 x \right)}\, dx$$
=
=
      1            
      /            
     |             
zoo* |  cos(4*x) dx
     |             
    /              
    0              
$$\tilde{\infty} \int\limits_{0}^{1} \cos{\left(4 x \right)}\, dx$$
±oo*Integral(cos(4*x), (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.