1 / | | pi | --*cos(4*x) dx | 0 | / 0
Integral((pi/0)*cos(4*x), (x, 0, 1))
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
Add the constant of integration:
The answer is:
/ | | pi | --*cos(4*x) dx = C + zoo*sin(4*x) | 0 | /
1 / | zoo* | cos(4*x) dx | / 0
=
1 / | zoo* | cos(4*x) dx | / 0
±oo*Integral(cos(4*x), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.