Mister Exam

Other calculators

Integral of 8*cos(4x)−2√x+e^(5x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                     
  /                                     
 |                                      
 |  /                 ___    5*x + 2\   
 |  \8*cos(4*x) - 2*\/ x  + E       / dx
 |                                      
/                                       
0                                       
$$\int\limits_{0}^{1} \left(e^{5 x + 2} + \left(- 2 \sqrt{x} + 8 \cos{\left(4 x \right)}\right)\right)\, dx$$
Integral(8*cos(4*x) - 2*sqrt(x) + E^(5*x + 2), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      Method #2

      1. Rewrite the integrand:

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      Method #3

      1. Rewrite the integrand:

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                         
 |                                                            3/2    5*x + 2
 | /                 ___    5*x + 2\                       4*x      e       
 | \8*cos(4*x) - 2*\/ x  + E       / dx = C + 2*sin(4*x) - ------ + --------
 |                                                           3         5    
/                                                                           
$$\int \left(e^{5 x + 2} + \left(- 2 \sqrt{x} + 8 \cos{\left(4 x \right)}\right)\right)\, dx = C - \frac{4 x^{\frac{3}{2}}}{3} + \frac{e^{5 x + 2}}{5} + 2 \sin{\left(4 x \right)}$$
The graph
The answer [src]
                  2    7
  4              e    e 
- - + 2*sin(4) - -- + --
  3              5    5 
$$2 \sin{\left(4 \right)} - \frac{e^{2}}{5} - \frac{4}{3} + \frac{e^{7}}{5}$$
=
=
                  2    7
  4              e    e 
- - + 2*sin(4) - -- + --
  3              5    5 
$$2 \sin{\left(4 \right)} - \frac{e^{2}}{5} - \frac{4}{3} + \frac{e^{7}}{5}$$
-4/3 + 2*sin(4) - exp(2)/5 + exp(7)/5
Numerical answer [src]
215.001882141956
215.001882141956

    Use the examples entering the upper and lower limits of integration.