Mister Exam

Integral of 3sin4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  3*sin(4*x) dx
 |               
/                
0                
$$\int\limits_{0}^{1} 3 \sin{\left(4 x \right)}\, dx$$
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                     3*cos(4*x)
 | 3*sin(4*x) dx = C - ----------
 |                         4     
/                                
$$-{{3\,\cos \left(4\,x\right)}\over{4}}$$
The graph
The answer [src]
3   3*cos(4)
- - --------
4      4    
$$3\,\left({{1}\over{4}}-{{\cos 4}\over{4}}\right)$$
=
=
3   3*cos(4)
- - --------
4      4    
$$- \frac{3 \cos{\left(4 \right)}}{4} + \frac{3}{4}$$
Numerical answer [src]
1.24023271564771
1.24023271564771
The graph
Integral of 3sin4x dx

    Use the examples entering the upper and lower limits of integration.