Mister Exam

Integral of 3sin4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  3*sin(4*x) dx
 |               
/                
0                
013sin(4x)dx\int\limits_{0}^{1} 3 \sin{\left(4 x \right)}\, dx
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    3sin(4x)dx=3sin(4x)dx\int 3 \sin{\left(4 x \right)}\, dx = 3 \int \sin{\left(4 x \right)}\, dx

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)16du\int \frac{\sin{\left(u \right)}}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)4du=sin(u)du4\int \frac{\sin{\left(u \right)}}{4}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

      Now substitute uu back in:

      cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

    So, the result is: 3cos(4x)4- \frac{3 \cos{\left(4 x \right)}}{4}

  2. Add the constant of integration:

    3cos(4x)4+constant- \frac{3 \cos{\left(4 x \right)}}{4}+ \mathrm{constant}


The answer is:

3cos(4x)4+constant- \frac{3 \cos{\left(4 x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                     3*cos(4*x)
 | 3*sin(4*x) dx = C - ----------
 |                         4     
/                                
3cos(4x)4-{{3\,\cos \left(4\,x\right)}\over{4}}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
3   3*cos(4)
- - --------
4      4    
3(14cos44)3\,\left({{1}\over{4}}-{{\cos 4}\over{4}}\right)
=
=
3   3*cos(4)
- - --------
4      4    
3cos(4)4+34- \frac{3 \cos{\left(4 \right)}}{4} + \frac{3}{4}
Numerical answer [src]
1.24023271564771
1.24023271564771
The graph
Integral of 3sin4x dx

    Use the examples entering the upper and lower limits of integration.