Mister Exam

Integral of sin5xcos3xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  sin(5*x)*cos(3*x)*1 dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \sin{\left(5 x \right)} \cos{\left(3 x \right)} 1\, dx$$
The graph
The answer [src]
5    5*cos(3)*cos(5)   3*sin(3)*sin(5)
-- - --------------- - ---------------
16          16                16      
$${{5}\over{16}}-{{\cos 8+4\,\cos 2}\over{16}}$$
=
=
5    5*cos(3)*cos(5)   3*sin(3)*sin(5)
-- - --------------- - ---------------
16          16                16      
$$- \frac{3 \sin{\left(3 \right)} \sin{\left(5 \right)}}{16} - \frac{5 \cos{\left(3 \right)} \cos{\left(5 \right)}}{16} + \frac{5}{16}$$
Numerical answer [src]
0.425630461249824
0.425630461249824
The graph
Integral of sin5xcos3xdx dx

    Use the examples entering the upper and lower limits of integration.