Mister Exam

Other calculators


cos(4x)/2^(3*sin(4x))
  • How to use it?

  • Integral of d{x}:
  • Integral of 1÷x Integral of 1÷x
  • Integral of 1/x(x+1) Integral of 1/x(x+1)
  • Integral of -4*x*exp(-2*x) Integral of -4*x*exp(-2*x)
  • Integral of 1/cos^2(x) Integral of 1/cos^2(x)
  • Identical expressions

  • cos(4x)/ two ^(three *sin(4x))
  • co sinus of e of (4x) divide by 2 to the power of (3 multiply by sinus of (4x))
  • co sinus of e of (4x) divide by two to the power of (three multiply by sinus of (4x))
  • cos(4x)/2(3*sin(4x))
  • cos4x/23*sin4x
  • cos(4x)/2^(3sin(4x))
  • cos(4x)/2(3sin(4x))
  • cos4x/23sin4x
  • cos4x/2^3sin4x
  • cos(4x) divide by 2^(3*sin(4x))
  • cos(4x)/2^(3*sin(4x))dx

Integral of cos(4x)/2^(3*sin(4x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    cos(4*x)    
 |  ----------- dx
 |   3*sin(4*x)   
 |  2             
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\cos{\left(4 x \right)}}{2^{3 \sin{\left(4 x \right)}}}\, dx$$
Integral(cos(4*x)/(2^(3*sin(4*x))), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of a constant is the constant times the variable of integration:

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of a constant is the constant times the variable of integration:

        So, the result is:

      Now substitute back in:

    Method #3

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                       -3*sin(4*x)
 |   cos(4*x)           2           
 | ----------- dx = C - ------------
 |  3*sin(4*x)           12*log(2)  
 | 2                                
 |                                  
/                                   
$$\int \frac{\cos{\left(4 x \right)}}{2^{3 \sin{\left(4 x \right)}}}\, dx = C - \frac{2^{- 3 \sin{\left(4 x \right)}}}{12 \log{\left(2 \right)}}$$
The graph
The answer [src]
             -3*sin(4)
    1       2         
--------- - ----------
12*log(2)   12*log(2) 
$$- \frac{2^{- 3 \sin{\left(4 \right)}}}{12 \log{\left(2 \right)}} + \frac{1}{12 \log{\left(2 \right)}}$$
=
=
             -3*sin(4)
    1       2         
--------- - ----------
12*log(2)   12*log(2) 
$$- \frac{2^{- 3 \sin{\left(4 \right)}}}{12 \log{\left(2 \right)}} + \frac{1}{12 \log{\left(2 \right)}}$$
Numerical answer [src]
-0.459810210721908
-0.459810210721908
The graph
Integral of cos(4x)/2^(3*sin(4x)) dx

    Use the examples entering the upper and lower limits of integration.