Integral of (x-3)*sin4x dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(x−3)sin(4x)=xsin(4x)−3sin(4x)
-
Integrate term-by-term:
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(4x).
Then du(x)=1.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(4x))dx=−4∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −16sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin(4x))dx=−3∫sin(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
So, the result is: 43cos(4x)
The result is: −4xcos(4x)+16sin(4x)+43cos(4x)
Method #2
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x−3 and let dv(x)=sin(4x).
Then du(x)=1.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(4x))dx=−4∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −16sin(4x)
Method #3
-
Rewrite the integrand:
(x−3)sin(4x)=xsin(4x)−3sin(4x)
-
Integrate term-by-term:
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(4x).
Then du(x)=1.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(4x))dx=−4∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −16sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin(4x))dx=−3∫sin(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
So, the result is: 43cos(4x)
The result is: −4xcos(4x)+16sin(4x)+43cos(4x)
-
Add the constant of integration:
−4xcos(4x)+16sin(4x)+43cos(4x)+constant
The answer is:
−4xcos(4x)+16sin(4x)+43cos(4x)+constant
The answer (Indefinite)
[src]
/
| sin(4*x) 3*cos(4*x) x*cos(4*x)
| (x - 3)*sin(4*x) dx = C + -------- + ---------- - ----------
| 16 4 4
/
∫(x−3)sin(4x)dx=C−4xcos(4x)+16sin(4x)+43cos(4x)
The graph
3 cos(4) sin(4)
- - + ------ + ------
4 2 16
−43+2cos(4)+16sin(4)
=
3 cos(4) sin(4)
- - + ------ + ------
4 2 16
−43+2cos(4)+16sin(4)
-3/4 + cos(4)/2 + sin(4)/16
Use the examples entering the upper and lower limits of integration.