Mister Exam

Other calculators

Integral of ((x^2+4x+3))*sin4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                           
  /                           
 |                            
 |  / 2          \            
 |  \x  + 4*x + 3/*sin(4*x) dx
 |                            
/                             
-1                            
$$\int\limits_{-1}^{0} \left(\left(x^{2} + 4 x\right) + 3\right) \sin{\left(4 x \right)}\, dx$$
Integral((x^2 + 4*x + 3)*sin(4*x), (x, -1, 0))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                               
 |                                                                         2                      
 | / 2          \                   23*cos(4*x)   sin(4*x)                x *cos(4*x)   x*sin(4*x)
 | \x  + 4*x + 3/*sin(4*x) dx = C - ----------- + -------- - x*cos(4*x) - ----------- + ----------
 |                                       32          4                         4            8     
/                                                                                                 
$$\int \left(\left(x^{2} + 4 x\right) + 3\right) \sin{\left(4 x \right)}\, dx = C - \frac{x^{2} \cos{\left(4 x \right)}}{4} + \frac{x \sin{\left(4 x \right)}}{8} - x \cos{\left(4 x \right)} + \frac{\sin{\left(4 x \right)}}{4} - \frac{23 \cos{\left(4 x \right)}}{32}$$
The graph
The answer [src]
  23   cos(4)   sin(4)
- -- - ------ + ------
  32     32       8   
$$- \frac{23}{32} + \frac{\sin{\left(4 \right)}}{8} - \frac{\cos{\left(4 \right)}}{32}$$
=
=
  23   cos(4)   sin(4)
- -- - ------ + ------
  32     32       8   
$$- \frac{23}{32} + \frac{\sin{\left(4 \right)}}{8} - \frac{\cos{\left(4 \right)}}{32}$$
-23/32 - cos(4)/32 + sin(4)/8
Numerical answer [src]
-0.792923948761503
-0.792923948761503

    Use the examples entering the upper and lower limits of integration.