Mister Exam

Integral of 3*sin(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
 --              
 4               
  /              
 |               
 |  3*sin(4*x) dx
 |               
/                
0                
0π43sin(4x)dx\int\limits_{0}^{\frac{\pi}{4}} 3 \sin{\left(4 x \right)}\, dx
Integral(3*sin(4*x), (x, 0, pi/4))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    3sin(4x)dx=3sin(4x)dx\int 3 \sin{\left(4 x \right)}\, dx = 3 \int \sin{\left(4 x \right)}\, dx

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du4\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

      Now substitute uu back in:

      cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

    So, the result is: 3cos(4x)4- \frac{3 \cos{\left(4 x \right)}}{4}

  2. Add the constant of integration:

    3cos(4x)4+constant- \frac{3 \cos{\left(4 x \right)}}{4}+ \mathrm{constant}


The answer is:

3cos(4x)4+constant- \frac{3 \cos{\left(4 x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                     3*cos(4*x)
 | 3*sin(4*x) dx = C - ----------
 |                         4     
/                                
3sin(4x)dx=C3cos(4x)4\int 3 \sin{\left(4 x \right)}\, dx = C - \frac{3 \cos{\left(4 x \right)}}{4}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.755-5
The answer [src]
3/2
32\frac{3}{2}
=
=
3/2
32\frac{3}{2}
3/2
Numerical answer [src]
1.5
1.5
The graph
Integral of 3*sin(4x) dx

    Use the examples entering the upper and lower limits of integration.