Mister Exam

Other calculators


tg(x)>-(√3)/3

tg(x)>-(√3)/3 inequation

A inequation with variable

The solution

You have entered [src]
            ___ 
         -\/ 3  
tan(x) > -------
            3   
tan(x)>(1)33\tan{\left(x \right)} > \frac{\left(-1\right) \sqrt{3}}{3}
tan(x) > -sqrt(3)/3
Detail solution
Given the inequality:
tan(x)>(1)33\tan{\left(x \right)} > \frac{\left(-1\right) \sqrt{3}}{3}
To solve this inequality, we must first solve the corresponding equation:
tan(x)=(1)33\tan{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{3}
Solve:
Given the equation
tan(x)=(1)33\tan{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{3}
- this is the simplest trigonometric equation
This equation is transformed to
x=πn+atan(33)x = \pi n + \operatorname{atan}{\left(- \frac{\sqrt{3}}{3} \right)}
Or
x=πnπ6x = \pi n - \frac{\pi}{6}
, where n - is a integer
x1=πnπ6x_{1} = \pi n - \frac{\pi}{6}
x1=πnπ6x_{1} = \pi n - \frac{\pi}{6}
This roots
x1=πnπ6x_{1} = \pi n - \frac{\pi}{6}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
(πnπ6)110\left(\pi n - \frac{\pi}{6}\right) - \frac{1}{10}
=
πnπ6110\pi n - \frac{\pi}{6} - \frac{1}{10}
substitute to the expression
tan(x)>(1)33\tan{\left(x \right)} > \frac{\left(-1\right) \sqrt{3}}{3}
tan(πnπ6110)>(1)33\tan{\left(\pi n - \frac{\pi}{6} - \frac{1}{10} \right)} > \frac{\left(-1\right) \sqrt{3}}{3}
                   ___ 
    /1    pi\   -\/ 3  
-tan|-- + --| > -------
    \10   6 /      3   
                

Then
x<πnπ6x < \pi n - \frac{\pi}{6}
no execute
the solution of our inequality is:
x>πnπ6x > \pi n - \frac{\pi}{6}
         _____  
        /
-------ο-------
       x_1
Solving inequality on a graph
0-80-60-40-2020406080-2500025000
Rapid solution [src]
  /   /            pi\     /5*pi            \\
Or|And|0 <= x, x < --|, And|---- < x, x < pi||
  \   \            2 /     \ 6              //
(0xx<π2)(5π6<xx<π)\left(0 \leq x \wedge x < \frac{\pi}{2}\right) \vee \left(\frac{5 \pi}{6} < x \wedge x < \pi\right)
((0 <= x)∧(x < pi/2))∨((x < pi)∧(5*pi/6 < x))
Rapid solution 2 [src]
    pi     5*pi     
[0, --) U (----, pi)
    2       6       
x in [0,π2)(5π6,π)x\ in\ \left[0, \frac{\pi}{2}\right) \cup \left(\frac{5 \pi}{6}, \pi\right)
x in Union(Interval.Ropen(0, pi/2), Interval.open(5*pi/6, pi))
The graph
tg(x)>-(√3)/3 inequation