Mister Exam

tgx≥√3 inequation

A inequation with variable

The solution

You have entered [src]
            ___
tan(x) >= \/ 3 
tan(x)3\tan{\left(x \right)} \geq \sqrt{3}
tan(x) >= sqrt(3)
Detail solution
Given the inequality:
tan(x)3\tan{\left(x \right)} \geq \sqrt{3}
To solve this inequality, we must first solve the corresponding equation:
tan(x)=3\tan{\left(x \right)} = \sqrt{3}
Solve:
Given the equation
tan(x)=3\tan{\left(x \right)} = \sqrt{3}
- this is the simplest trigonometric equation
This equation is transformed to
x=πn+atan(3)x = \pi n + \operatorname{atan}{\left(\sqrt{3} \right)}
Or
x=πn+π3x = \pi n + \frac{\pi}{3}
, where n - is a integer
x1=πn+π3x_{1} = \pi n + \frac{\pi}{3}
x1=πn+π3x_{1} = \pi n + \frac{\pi}{3}
This roots
x1=πn+π3x_{1} = \pi n + \frac{\pi}{3}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
(πn+π3)+110\left(\pi n + \frac{\pi}{3}\right) + - \frac{1}{10}
=
πn110+π3\pi n - \frac{1}{10} + \frac{\pi}{3}
substitute to the expression
tan(x)3\tan{\left(x \right)} \geq \sqrt{3}
tan(πn110+π3)3\tan{\left(\pi n - \frac{1}{10} + \frac{\pi}{3} \right)} \geq \sqrt{3}
   /  1    pi       \      ___
tan|- -- + -- + pi*n| >= \/ 3 
   \  10   3        /    

but
   /  1    pi       \     ___
tan|- -- + -- + pi*n| < \/ 3 
   \  10   3        /   

Then
xπn+π3x \leq \pi n + \frac{\pi}{3}
no execute
the solution of our inequality is:
xπn+π3x \geq \pi n + \frac{\pi}{3}
         _____  
        /
-------•-------
       x1
Solving inequality on a graph
0-80-60-40-2020406080-1000010000
Rapid solution [src]
   /pi           pi\
And|-- <= x, x < --|
   \3            2 /
π3xx<π2\frac{\pi}{3} \leq x \wedge x < \frac{\pi}{2}
(pi/3 <= x)∧(x < pi/2)
Rapid solution 2 [src]
 pi  pi 
[--, --)
 3   2  
x in [π3,π2)x\ in\ \left[\frac{\pi}{3}, \frac{\pi}{2}\right)
x in Interval.Ropen(pi/3, pi/2)