Mister Exam

Other calculators

cot(x)<=-√3/3 inequation

A inequation with variable

The solution

You have entered [src]
             ___ 
          -\/ 3  
cot(x) <= -------
             3   
$$\cot{\left(x \right)} \leq \frac{\left(-1\right) \sqrt{3}}{3}$$
cot(x) <= (-sqrt(3))/3
Detail solution
Given the inequality:
$$\cot{\left(x \right)} \leq \frac{\left(-1\right) \sqrt{3}}{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cot{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{3}$$
Solve:
Given the equation
$$\cot{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{3}$$
transform
$$\cot{\left(x \right)} - 1 + \frac{\sqrt{3}}{3} = 0$$
$$\cot{\left(x \right)} - 1 - \frac{\left(-1\right) \sqrt{3}}{3} = 0$$
Do replacement
$$w = \cot{\left(x \right)}$$
Expand brackets in the left part
-1 + w - -sqrt+3)/3 = 0

Move free summands (without w)
from left part to right part, we given:
$$w + \frac{\sqrt{3}}{3} = 1$$
Divide both parts of the equation by (w + sqrt(3)/3)/w
w = 1 / ((w + sqrt(3)/3)/w)

We get the answer: w = 1 - sqrt(3)/3
do backward replacement
$$\cot{\left(x \right)} = w$$
substitute w:
$$x_{1} = - \frac{\pi}{3}$$
$$x_{1} = - \frac{\pi}{3}$$
This roots
$$x_{1} = - \frac{\pi}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{\pi}{3} - \frac{1}{10}$$
=
$$- \frac{\pi}{3} - \frac{1}{10}$$
substitute to the expression
$$\cot{\left(x \right)} \leq \frac{\left(-1\right) \sqrt{3}}{3}$$
$$\cot{\left(- \frac{\pi}{3} - \frac{1}{10} \right)} \leq \frac{\left(-1\right) \sqrt{3}}{3}$$
                    ___ 
    /1    pi\    -\/ 3  
-cot|-- + --| <= -------
    \10   3 /       3   
                 

but
                    ___ 
    /1    pi\    -\/ 3  
-cot|-- + --| >= -------
    \10   3 /       3   
                 

Then
$$x \leq - \frac{\pi}{3}$$
no execute
the solution of our inequality is:
$$x \geq - \frac{\pi}{3}$$
         _____  
        /
-------•-------
       x1
Rapid solution [src]
   /2*pi             \
And|---- <= x, x < pi|
   \ 3               /
$$\frac{2 \pi}{3} \leq x \wedge x < \pi$$
(x < pi)∧(2*pi/3 <= x)
Rapid solution 2 [src]
 2*pi     
[----, pi)
  3       
$$x\ in\ \left[\frac{2 \pi}{3}, \pi\right)$$
x in Interval.Ropen(2*pi/3, pi)