Mister Exam

Other calculators


tgx>=3/3

tgx>=3/3 inequation

A inequation with variable

The solution

You have entered [src]
tan(x) >= 1
tan(x)1\tan{\left(x \right)} \geq 1
tan(x) >= 1
Detail solution
Given the inequality:
tan(x)1\tan{\left(x \right)} \geq 1
To solve this inequality, we must first solve the corresponding equation:
tan(x)=1\tan{\left(x \right)} = 1
Solve:
Given the equation
tan(x)=1\tan{\left(x \right)} = 1
- this is the simplest trigonometric equation
This equation is transformed to
x=πn+atan(1)x = \pi n + \operatorname{atan}{\left(1 \right)}
Or
x=πn+π4x = \pi n + \frac{\pi}{4}
, where n - is a integer
x1=πn+π4x_{1} = \pi n + \frac{\pi}{4}
x1=πn+π4x_{1} = \pi n + \frac{\pi}{4}
This roots
x1=πn+π4x_{1} = \pi n + \frac{\pi}{4}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
(πn+π4)110\left(\pi n + \frac{\pi}{4}\right) - \frac{1}{10}
=
πn110+π4\pi n - \frac{1}{10} + \frac{\pi}{4}
substitute to the expression
tan(x)1\tan{\left(x \right)} \geq 1
tan(πn110+π4)1\tan{\left(\pi n - \frac{1}{10} + \frac{\pi}{4} \right)} \geq 1
   /1    pi\     
cot|-- + --| >= 1
   \10   4 /     

but
   /1    pi\    
cot|-- + --| < 1
   \10   4 /    

Then
xπn+π4x \leq \pi n + \frac{\pi}{4}
no execute
the solution of our inequality is:
xπn+π4x \geq \pi n + \frac{\pi}{4}
         _____  
        /
-------•-------
       x_1
Solving inequality on a graph
0-80-60-40-2020406080-50005000
Rapid solution [src]
   /pi           pi\
And|-- <= x, x < --|
   \4            2 /
π4xx<π2\frac{\pi}{4} \leq x \wedge x < \frac{\pi}{2}
(pi/4 <= x)∧(x < pi/2)
Rapid solution 2 [src]
 pi  pi 
[--, --)
 4   2  
x in [π4,π2)x\ in\ \left[\frac{\pi}{4}, \frac{\pi}{2}\right)
x in Interval.Ropen(pi/4, pi/2)
The graph
tgx>=3/3 inequation