Mister Exam

sin(t)<-2:3 inequation

A inequation with variable

The solution

You have entered [src]
sin(t) < -2/3
sin(t)<23\sin{\left(t \right)} < - \frac{2}{3}
sin(t) < -2/3
Detail solution
Given the inequality:
sin(t)<23\sin{\left(t \right)} < - \frac{2}{3}
To solve this inequality, we must first solve the corresponding equation:
sin(t)=23\sin{\left(t \right)} = - \frac{2}{3}
Solve:
Given the equation
sin(t)=23\sin{\left(t \right)} = - \frac{2}{3}
transform
sin(t)+23=0\sin{\left(t \right)} + \frac{2}{3} = 0
sin(t)+23=0\sin{\left(t \right)} + \frac{2}{3} = 0
Do replacement
w=sin(t)w = \sin{\left(t \right)}
Move free summands (without w)
from left part to right part, we given:
w=23w = - \frac{2}{3}
We get the answer: w = -2/3
do backward replacement
sin(t)=w\sin{\left(t \right)} = w
substitute w:
x1=412.27836527649x_{1} = 412.27836527649
x2=10.1545056169963x_{2} = 10.1545056169963
x3=93.5180519514668x_{3} = 93.5180519514668
x4=1216.52608459548x_{4} = 1216.52608459548
x5=32.1456541921249x_{5} = -32.1456541921249
x6=65.2437180691587x_{6} = -65.2437180691587
x7=30.686198879671x_{7} = 30.686198879671
x8=107.54387787828x_{8} = -107.54387787828
x9=302.322622400847x_{9} = -302.322622400847
x10=77.8100886835179x_{10} = -77.8100886835179
x11=8.69505030454241x_{11} = -8.69505030454241
x12=38.4288394993045x_{12} = -38.4288394993045
x13=5.55345765095262x_{13} = 5.55345765095262
x14=16.4376909241759x_{14} = 16.4376909241759
x15=88.6943219567412x_{15} = -88.6943219567412
x16=18.1198282653118x_{16} = 18.1198282653118
x17=50.9952101136637x_{17} = -50.9952101136637
x18=57.2783954208432x_{18} = -57.2783954208432
x19=24.4030135724914x_{19} = 24.4030135724914
x20=55.8189401083893x_{20} = 55.8189401083893
x21=14.978235611722x_{21} = -14.978235611722
x22=85.5527293031514x_{22} = 85.5527293031514
x23=72.9863586887922x_{23} = 72.9863586887922
x24=69.8447660352024x_{24} = -69.8447660352024
x25=11.8366429581322x_{25} = 11.8366429581322
x26=74.6684960299281x_{26} = 74.6684960299281
x27=33.8277915332608x_{27} = -33.8277915332608
x28=101.2606925711x_{28} = -101.2606925711
x29=7.01291296340655x_{29} = -7.01291296340655
x30=0.729727656226966x_{30} = -0.729727656226966
x31=63.5615807280228x_{31} = -63.5615807280228
x32=84.0932739906975x_{32} = -84.0932739906975
x33=68.3853107227485x_{33} = 68.3853107227485
x34=60.419988074433x_{34} = 60.419988074433
x35=99.8012372586464x_{35} = 99.8012372586464
x36=13.2960982705861x_{36} = -13.2960982705861
x37=58.9605327619791x_{37} = -58.9605327619791
x38=21.2614209189016x_{38} = -21.2614209189016
x39=29.0040615385351x_{39} = 29.0040615385351
x40=87.2348666442873x_{40} = 87.2348666442873
x41=2.41186499736283x_{41} = -2.41186499736283
x42=62.1021254155689x_{42} = 62.1021254155689
x43=27.5446062260812x_{43} = -27.5446062260812
x44=44.7120248064841x_{44} = -44.7120248064841
x45=94.9775072639208x_{45} = -94.9775072639208
x46=54.1368027672534x_{46} = 54.1368027672534
x47=25.8624688849453x_{47} = -25.8624688849453
x48=98.1190999175106x_{48} = 98.1190999175106
x49=836.393373511112x_{49} = -836.393373511112
x50=3.87132030981676x_{50} = 3.87132030981676
x51=46.3941621476199x_{51} = -46.3941621476199
x52=22.7208762313555x_{52} = 22.7208762313555
x53=36.9693841868506x_{53} = 36.9693841868506
x54=90.376459297877x_{54} = -90.376459297877
x55=175.199460944801x_{55} = 175.199460944801
x56=82.4111366495616x_{56} = -82.4111366495616
x57=91.835914610331x_{57} = 91.835914610331
x58=1755.42056570047x_{58} = -1755.42056570047
x59=19.5792835777657x_{59} = -19.5792835777657
x60=79.2695439959718x_{60} = 79.2695439959718
x61=49.5357548012097x_{61} = 49.5357548012097
x62=66.7031733816126x_{62} = 66.7031733816126
x63=80.9516813371077x_{63} = 80.9516813371077
x64=40.1109768404403x_{64} = -40.1109768404403
x65=47.8536174600739x_{65} = 47.8536174600739
x66=96.6596446050566x_{66} = -96.6596446050566
x67=43.2525694940301x_{67} = 43.2525694940301
x68=1979.9330994178x_{68} = -1979.9330994178
x69=71.5269033763383x_{69} = -71.5269033763383
x70=41.5704321528943x_{70} = 41.5704321528943
x71=52.6773474547995x_{71} = -52.6773474547995
x72=35.2872468457147x_{72} = 35.2872468457147
x73=76.127951342382x_{73} = -76.127951342382
x1=412.27836527649x_{1} = 412.27836527649
x2=10.1545056169963x_{2} = 10.1545056169963
x3=93.5180519514668x_{3} = 93.5180519514668
x4=1216.52608459548x_{4} = 1216.52608459548
x5=32.1456541921249x_{5} = -32.1456541921249
x6=65.2437180691587x_{6} = -65.2437180691587
x7=30.686198879671x_{7} = 30.686198879671
x8=107.54387787828x_{8} = -107.54387787828
x9=302.322622400847x_{9} = -302.322622400847
x10=77.8100886835179x_{10} = -77.8100886835179
x11=8.69505030454241x_{11} = -8.69505030454241
x12=38.4288394993045x_{12} = -38.4288394993045
x13=5.55345765095262x_{13} = 5.55345765095262
x14=16.4376909241759x_{14} = 16.4376909241759
x15=88.6943219567412x_{15} = -88.6943219567412
x16=18.1198282653118x_{16} = 18.1198282653118
x17=50.9952101136637x_{17} = -50.9952101136637
x18=57.2783954208432x_{18} = -57.2783954208432
x19=24.4030135724914x_{19} = 24.4030135724914
x20=55.8189401083893x_{20} = 55.8189401083893
x21=14.978235611722x_{21} = -14.978235611722
x22=85.5527293031514x_{22} = 85.5527293031514
x23=72.9863586887922x_{23} = 72.9863586887922
x24=69.8447660352024x_{24} = -69.8447660352024
x25=11.8366429581322x_{25} = 11.8366429581322
x26=74.6684960299281x_{26} = 74.6684960299281
x27=33.8277915332608x_{27} = -33.8277915332608
x28=101.2606925711x_{28} = -101.2606925711
x29=7.01291296340655x_{29} = -7.01291296340655
x30=0.729727656226966x_{30} = -0.729727656226966
x31=63.5615807280228x_{31} = -63.5615807280228
x32=84.0932739906975x_{32} = -84.0932739906975
x33=68.3853107227485x_{33} = 68.3853107227485
x34=60.419988074433x_{34} = 60.419988074433
x35=99.8012372586464x_{35} = 99.8012372586464
x36=13.2960982705861x_{36} = -13.2960982705861
x37=58.9605327619791x_{37} = -58.9605327619791
x38=21.2614209189016x_{38} = -21.2614209189016
x39=29.0040615385351x_{39} = 29.0040615385351
x40=87.2348666442873x_{40} = 87.2348666442873
x41=2.41186499736283x_{41} = -2.41186499736283
x42=62.1021254155689x_{42} = 62.1021254155689
x43=27.5446062260812x_{43} = -27.5446062260812
x44=44.7120248064841x_{44} = -44.7120248064841
x45=94.9775072639208x_{45} = -94.9775072639208
x46=54.1368027672534x_{46} = 54.1368027672534
x47=25.8624688849453x_{47} = -25.8624688849453
x48=98.1190999175106x_{48} = 98.1190999175106
x49=836.393373511112x_{49} = -836.393373511112
x50=3.87132030981676x_{50} = 3.87132030981676
x51=46.3941621476199x_{51} = -46.3941621476199
x52=22.7208762313555x_{52} = 22.7208762313555
x53=36.9693841868506x_{53} = 36.9693841868506
x54=90.376459297877x_{54} = -90.376459297877
x55=175.199460944801x_{55} = 175.199460944801
x56=82.4111366495616x_{56} = -82.4111366495616
x57=91.835914610331x_{57} = 91.835914610331
x58=1755.42056570047x_{58} = -1755.42056570047
x59=19.5792835777657x_{59} = -19.5792835777657
x60=79.2695439959718x_{60} = 79.2695439959718
x61=49.5357548012097x_{61} = 49.5357548012097
x62=66.7031733816126x_{62} = 66.7031733816126
x63=80.9516813371077x_{63} = 80.9516813371077
x64=40.1109768404403x_{64} = -40.1109768404403
x65=47.8536174600739x_{65} = 47.8536174600739
x66=96.6596446050566x_{66} = -96.6596446050566
x67=43.2525694940301x_{67} = 43.2525694940301
x68=1979.9330994178x_{68} = -1979.9330994178
x69=71.5269033763383x_{69} = -71.5269033763383
x70=41.5704321528943x_{70} = 41.5704321528943
x71=52.6773474547995x_{71} = -52.6773474547995
x72=35.2872468457147x_{72} = 35.2872468457147
x73=76.127951342382x_{73} = -76.127951342382
This roots
x68=1979.9330994178x_{68} = -1979.9330994178
x58=1755.42056570047x_{58} = -1755.42056570047
x49=836.393373511112x_{49} = -836.393373511112
x9=302.322622400847x_{9} = -302.322622400847
x8=107.54387787828x_{8} = -107.54387787828
x28=101.2606925711x_{28} = -101.2606925711
x66=96.6596446050566x_{66} = -96.6596446050566
x45=94.9775072639208x_{45} = -94.9775072639208
x54=90.376459297877x_{54} = -90.376459297877
x15=88.6943219567412x_{15} = -88.6943219567412
x32=84.0932739906975x_{32} = -84.0932739906975
x56=82.4111366495616x_{56} = -82.4111366495616
x10=77.8100886835179x_{10} = -77.8100886835179
x73=76.127951342382x_{73} = -76.127951342382
x69=71.5269033763383x_{69} = -71.5269033763383
x24=69.8447660352024x_{24} = -69.8447660352024
x6=65.2437180691587x_{6} = -65.2437180691587
x31=63.5615807280228x_{31} = -63.5615807280228
x37=58.9605327619791x_{37} = -58.9605327619791
x18=57.2783954208432x_{18} = -57.2783954208432
x71=52.6773474547995x_{71} = -52.6773474547995
x17=50.9952101136637x_{17} = -50.9952101136637
x51=46.3941621476199x_{51} = -46.3941621476199
x44=44.7120248064841x_{44} = -44.7120248064841
x64=40.1109768404403x_{64} = -40.1109768404403
x12=38.4288394993045x_{12} = -38.4288394993045
x27=33.8277915332608x_{27} = -33.8277915332608
x5=32.1456541921249x_{5} = -32.1456541921249
x43=27.5446062260812x_{43} = -27.5446062260812
x47=25.8624688849453x_{47} = -25.8624688849453
x38=21.2614209189016x_{38} = -21.2614209189016
x59=19.5792835777657x_{59} = -19.5792835777657
x21=14.978235611722x_{21} = -14.978235611722
x36=13.2960982705861x_{36} = -13.2960982705861
x11=8.69505030454241x_{11} = -8.69505030454241
x29=7.01291296340655x_{29} = -7.01291296340655
x41=2.41186499736283x_{41} = -2.41186499736283
x30=0.729727656226966x_{30} = -0.729727656226966
x50=3.87132030981676x_{50} = 3.87132030981676
x13=5.55345765095262x_{13} = 5.55345765095262
x2=10.1545056169963x_{2} = 10.1545056169963
x25=11.8366429581322x_{25} = 11.8366429581322
x14=16.4376909241759x_{14} = 16.4376909241759
x16=18.1198282653118x_{16} = 18.1198282653118
x52=22.7208762313555x_{52} = 22.7208762313555
x19=24.4030135724914x_{19} = 24.4030135724914
x39=29.0040615385351x_{39} = 29.0040615385351
x7=30.686198879671x_{7} = 30.686198879671
x72=35.2872468457147x_{72} = 35.2872468457147
x53=36.9693841868506x_{53} = 36.9693841868506
x70=41.5704321528943x_{70} = 41.5704321528943
x67=43.2525694940301x_{67} = 43.2525694940301
x65=47.8536174600739x_{65} = 47.8536174600739
x61=49.5357548012097x_{61} = 49.5357548012097
x46=54.1368027672534x_{46} = 54.1368027672534
x20=55.8189401083893x_{20} = 55.8189401083893
x34=60.419988074433x_{34} = 60.419988074433
x42=62.1021254155689x_{42} = 62.1021254155689
x62=66.7031733816126x_{62} = 66.7031733816126
x33=68.3853107227485x_{33} = 68.3853107227485
x23=72.9863586887922x_{23} = 72.9863586887922
x26=74.6684960299281x_{26} = 74.6684960299281
x60=79.2695439959718x_{60} = 79.2695439959718
x63=80.9516813371077x_{63} = 80.9516813371077
x22=85.5527293031514x_{22} = 85.5527293031514
x40=87.2348666442873x_{40} = 87.2348666442873
x57=91.835914610331x_{57} = 91.835914610331
x3=93.5180519514668x_{3} = 93.5180519514668
x48=98.1190999175106x_{48} = 98.1190999175106
x35=99.8012372586464x_{35} = 99.8012372586464
x55=175.199460944801x_{55} = 175.199460944801
x1=412.27836527649x_{1} = 412.27836527649
x4=1216.52608459548x_{4} = 1216.52608459548
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x68x_{0} < x_{68}
For example, let's take the point
x0=x68110x_{0} = x_{68} - \frac{1}{10}
=
1979.9330994178+110-1979.9330994178 + - \frac{1}{10}
=
1980.0330994178-1980.0330994178
substitute to the expression
sin(t)<23\sin{\left(t \right)} < - \frac{2}{3}
sin(t)<23\sin{\left(t \right)} < - \frac{2}{3}
sin(t) < -2/3

Then
x<1979.9330994178x < -1979.9330994178
no execute
one of the solutions of our inequality is:
x>1979.9330994178x<1755.42056570047x > -1979.9330994178 \wedge x < -1755.42056570047
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
       x68      x58      x49      x9      x8      x28      x66      x45      x54      x15      x32      x56      x10      x73      x69      x24      x6      x31      x37      x18      x71      x17      x51      x44      x64      x12      x27      x5      x43      x47      x38      x59      x21      x36      x11      x29      x41      x30      x50      x13      x2      x25      x14      x16      x52      x19      x39      x7      x72      x53      x70      x67      x65      x61      x46      x20      x34      x42      x62      x33      x23      x26      x60      x63      x22      x40      x57      x3      x48      x35      x55      x1      x4

Other solutions will get with the changeover to the next point
etc.
The answer:
x>1979.9330994178x<1755.42056570047x > -1979.9330994178 \wedge x < -1755.42056570047
x>836.393373511112x<302.322622400847x > -836.393373511112 \wedge x < -302.322622400847
x>107.54387787828x<101.2606925711x > -107.54387787828 \wedge x < -101.2606925711
x>96.6596446050566x<94.9775072639208x > -96.6596446050566 \wedge x < -94.9775072639208
x>90.376459297877x<88.6943219567412x > -90.376459297877 \wedge x < -88.6943219567412
x>84.0932739906975x<82.4111366495616x > -84.0932739906975 \wedge x < -82.4111366495616
x>77.8100886835179x<76.127951342382x > -77.8100886835179 \wedge x < -76.127951342382
x>71.5269033763383x<69.8447660352024x > -71.5269033763383 \wedge x < -69.8447660352024
x>65.2437180691587x<63.5615807280228x > -65.2437180691587 \wedge x < -63.5615807280228
x>58.9605327619791x<57.2783954208432x > -58.9605327619791 \wedge x < -57.2783954208432
x>52.6773474547995x<50.9952101136637x > -52.6773474547995 \wedge x < -50.9952101136637
x>46.3941621476199x<44.7120248064841x > -46.3941621476199 \wedge x < -44.7120248064841
x>40.1109768404403x<38.4288394993045x > -40.1109768404403 \wedge x < -38.4288394993045
x>33.8277915332608x<32.1456541921249x > -33.8277915332608 \wedge x < -32.1456541921249
x>27.5446062260812x<25.8624688849453x > -27.5446062260812 \wedge x < -25.8624688849453
x>21.2614209189016x<19.5792835777657x > -21.2614209189016 \wedge x < -19.5792835777657
x>14.978235611722x<13.2960982705861x > -14.978235611722 \wedge x < -13.2960982705861
x>8.69505030454241x<7.01291296340655x > -8.69505030454241 \wedge x < -7.01291296340655
x>2.41186499736283x<0.729727656226966x > -2.41186499736283 \wedge x < -0.729727656226966
x>3.87132030981676x<5.55345765095262x > 3.87132030981676 \wedge x < 5.55345765095262
x>10.1545056169963x<11.8366429581322x > 10.1545056169963 \wedge x < 11.8366429581322
x>16.4376909241759x<18.1198282653118x > 16.4376909241759 \wedge x < 18.1198282653118
x>22.7208762313555x<24.4030135724914x > 22.7208762313555 \wedge x < 24.4030135724914
x>29.0040615385351x<30.686198879671x > 29.0040615385351 \wedge x < 30.686198879671
x>35.2872468457147x<36.9693841868506x > 35.2872468457147 \wedge x < 36.9693841868506
x>41.5704321528943x<43.2525694940301x > 41.5704321528943 \wedge x < 43.2525694940301
x>47.8536174600739x<49.5357548012097x > 47.8536174600739 \wedge x < 49.5357548012097
x>54.1368027672534x<55.8189401083893x > 54.1368027672534 \wedge x < 55.8189401083893
x>60.419988074433x<62.1021254155689x > 60.419988074433 \wedge x < 62.1021254155689
x>66.7031733816126x<68.3853107227485x > 66.7031733816126 \wedge x < 68.3853107227485
x>72.9863586887922x<74.6684960299281x > 72.9863586887922 \wedge x < 74.6684960299281
x>79.2695439959718x<80.9516813371077x > 79.2695439959718 \wedge x < 80.9516813371077
x>85.5527293031514x<87.2348666442873x > 85.5527293031514 \wedge x < 87.2348666442873
x>91.835914610331x<93.5180519514668x > 91.835914610331 \wedge x < 93.5180519514668
x>98.1190999175106x<99.8012372586464x > 98.1190999175106 \wedge x < 99.8012372586464
x>175.199460944801x<412.27836527649x > 175.199460944801 \wedge x < 412.27836527649
x>1216.52608459548x > 1216.52608459548
Rapid solution [src]
   /          /    ___\                  /    ___\    \
   |          |2*\/ 5 |                  |2*\/ 5 |    |
And|t < - atan|-------| + 2*pi, pi + atan|-------| < t|
   \          \   5   /                  \   5   /    /
t<atan(255)+2πatan(255)+π<tt < - \operatorname{atan}{\left(\frac{2 \sqrt{5}}{5} \right)} + 2 \pi \wedge \operatorname{atan}{\left(\frac{2 \sqrt{5}}{5} \right)} + \pi < t
(pi + atan(2*sqrt(5)/5) < t)∧(t < -atan(2*sqrt(5)/5) + 2*pi)
Rapid solution 2 [src]
          /    ___\        /    ___\        
          |2*\/ 5 |        |2*\/ 5 |        
(pi + atan|-------|, - atan|-------| + 2*pi)
          \   5   /        \   5   /        
x in (atan(255)+π,atan(255)+2π)x\ in\ \left(\operatorname{atan}{\left(\frac{2 \sqrt{5}}{5} \right)} + \pi, - \operatorname{atan}{\left(\frac{2 \sqrt{5}}{5} \right)} + 2 \pi\right)
x in Interval.open(atan(2*sqrt(5)/5) + pi, -atan(2*sqrt(5)/5) + 2*pi)