Mister Exam

Graphing y = tg(4*x)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
f(x) = tan(4*x)
f(x)=tan(4x)f{\left(x \right)} = \tan{\left(4 x \right)}
f = tan(4*x)
The graph of the function
02468-8-6-4-2-1010-100100
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
tan(4x)=0\tan{\left(4 x \right)} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=0x_{1} = 0
Numerical solution
x1=73.8274273593601x_{1} = 73.8274273593601
x2=55.7632696012188x_{2} = 55.7632696012188
x3=33.7721210260903x_{3} = -33.7721210260903
x4=3.92699081698724x_{4} = 3.92699081698724
x5=47.9092879672443x_{5} = -47.9092879672443
x6=46.3384916404494x_{6} = 46.3384916404494
x7=16.4933614313464x_{7} = 16.4933614313464
x8=14.1371669411541x_{8} = 14.1371669411541
x9=76.1836218495525x_{9} = -76.1836218495525
x10=58.1194640914112x_{10} = 58.1194640914112
x11=90.3207887907066x_{11} = 90.3207887907066
x12=60.4756585816035x_{12} = 60.4756585816035
x13=99.7455667514759x_{13} = -99.7455667514759
x14=98.174770424681x_{14} = -98.174770424681
x15=10.2101761241668x_{15} = -10.2101761241668
x16=43.9822971502571x_{16} = -43.9822971502571
x17=28.2743338823081x_{17} = 28.2743338823081
x18=85.6083998103219x_{18} = -85.6083998103219
x19=36.1283155162826x_{19} = 36.1283155162826
x20=7.85398163397448x_{20} = -7.85398163397448
x21=58.1194640914112x_{21} = -58.1194640914112
x22=55.7632696012188x_{22} = -55.7632696012188
x23=86.3937979737193x_{23} = 86.3937979737193
x24=51.8362787842316x_{24} = 51.8362787842316
x25=32.2013246992954x_{25} = 32.2013246992954
x26=89.5353906273091x_{26} = -89.5353906273091
x27=18.0641577581413x_{27} = 18.0641577581413
x28=100.530964914873x_{28} = 100.530964914873
x29=91.8915851175014x_{29} = -91.8915851175014
x30=15.707963267949x_{30} = -15.707963267949
x31=37.6991118430775x_{31} = -37.6991118430775
x32=91.8915851175014x_{32} = 91.8915851175014
x33=3.92699081698724x_{33} = -3.92699081698724
x34=71.4712328691678x_{34} = -71.4712328691678
x35=40.0553063332699x_{35} = 40.0553063332699
x36=25.9181393921158x_{36} = -25.9181393921158
x37=33.7721210260903x_{37} = 33.7721210260903
x38=65.9734457253857x_{38} = 65.9734457253857
x39=36.1283155162826x_{39} = -36.1283155162826
x40=2.35619449019234x_{40} = 2.35619449019234
x41=47.9092879672443x_{41} = 47.9092879672443
x42=11.7809724509617x_{42} = -11.7809724509617
x43=21.9911485751286x_{43} = 21.9911485751286
x44=62.0464549083984x_{44} = -62.0464549083984
x45=65.9734457253857x_{45} = -65.9734457253857
x46=18.0641577581413x_{46} = -18.0641577581413
x47=82.4668071567321x_{47} = 82.4668071567321
x48=54.1924732744239x_{48} = 54.1924732744239
x49=14.1371669411541x_{49} = -14.1371669411541
x50=80.1106126665397x_{50} = 80.1106126665397
x51=95.8185759344887x_{51} = 95.8185759344887
x52=78.5398163397448x_{52} = 78.5398163397448
x53=49.4800842940392x_{53} = -49.4800842940392
x54=84.037603483527x_{54} = 84.037603483527
x55=77.7544181763474x_{55} = -77.7544181763474
x56=20.4203522483337x_{56} = 20.4203522483337
x57=24.3473430653209x_{57} = 24.3473430653209
x58=23.5619449019235x_{58} = -23.5619449019235
x59=51.8362787842316x_{59} = -51.8362787842316
x60=29.845130209103x_{60} = -29.845130209103
x61=7.85398163397448x_{61} = 7.85398163397448
x62=95.8185759344887x_{62} = -95.8185759344887
x63=21.9911485751286x_{63} = -21.9911485751286
x64=62.0464549083984x_{64} = 62.0464549083984
x65=76.1836218495525x_{65} = 76.1836218495525
x66=69.9004365423729x_{66} = 69.9004365423729
x67=67.5442420521806x_{67} = -67.5442420521806
x68=59.6902604182061x_{68} = -59.6902604182061
x69=69.9004365423729x_{69} = -69.9004365423729
x70=68.329640215578x_{70} = 68.329640215578
x71=63.6172512351933x_{71} = -63.6172512351933
x72=98.174770424681x_{72} = 98.174770424681
x73=19.6349540849362x_{73} = -19.6349540849362
x74=45.553093477052x_{74} = -45.553093477052
x75=87.9645943005142x_{75} = -87.9645943005142
x76=93.4623814442964x_{76} = -93.4623814442964
x77=41.6261026600648x_{77} = -41.6261026600648
x78=27.4889357189107x_{78} = -27.4889357189107
x79=42.4115008234622x_{79} = 42.4115008234622
x80=6.28318530717959x_{80} = 6.28318530717959
x81=73.8274273593601x_{81} = -73.8274273593601
x82=0x_{82} = 0
x83=84.037603483527x_{83} = -84.037603483527
x84=1.5707963267949x_{84} = -1.5707963267949
x85=10.2101761241668x_{85} = 10.2101761241668
x86=87.9645943005142x_{86} = 87.9645943005142
x87=43.9822971502571x_{87} = 43.9822971502571
x88=25.9181393921158x_{88} = 25.9181393921158
x89=72.2566310325652x_{89} = 72.2566310325652
x90=94.2477796076938x_{90} = 94.2477796076938
x91=40.0553063332699x_{91} = -40.0553063332699
x92=11.7809724509617x_{92} = 11.7809724509617
x93=54.1924732744239x_{93} = -54.1924732744239
x94=81.6814089933346x_{94} = -81.6814089933346
x95=80.1106126665397x_{95} = -80.1106126665397
x96=32.2013246992954x_{96} = -32.2013246992954
x97=38.484510006475x_{97} = 38.484510006475
x98=5.49778714378214x_{98} = -5.49778714378214
x99=64.4026493985908x_{99} = 64.4026493985908
x100=29.845130209103x_{100} = 29.845130209103
x101=50.2654824574367x_{101} = 50.2654824574367
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to tan(4*x).
tan(04)\tan{\left(0 \cdot 4 \right)}
The result:
f(0)=0f{\left(0 \right)} = 0
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
4tan2(4x)+4=04 \tan^{2}{\left(4 x \right)} + 4 = 0
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
32(tan2(4x)+1)tan(4x)=032 \left(\tan^{2}{\left(4 x \right)} + 1\right) \tan{\left(4 x \right)} = 0
Solve this equation
The roots of this equation
x1=0x_{1} = 0

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[0,)\left[0, \infty\right)
Convex at the intervals
(,0]\left(-\infty, 0\right]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limxtan(4x)=,\lim_{x \to -\infty} \tan{\left(4 x \right)} = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=,y = \left\langle -\infty, \infty\right\rangle
limxtan(4x)=,\lim_{x \to \infty} \tan{\left(4 x \right)} = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=,y = \left\langle -\infty, \infty\right\rangle
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of tan(4*x), divided by x at x->+oo and x ->-oo
True

Let's take the limit
so,
inclined asymptote equation on the left:
y=xlimx(tan(4x)x)y = x \lim_{x \to -\infty}\left(\frac{\tan{\left(4 x \right)}}{x}\right)
True

Let's take the limit
so,
inclined asymptote equation on the right:
y=xlimx(tan(4x)x)y = x \lim_{x \to \infty}\left(\frac{\tan{\left(4 x \right)}}{x}\right)
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
tan(4x)=tan(4x)\tan{\left(4 x \right)} = - \tan{\left(4 x \right)}
- No
tan(4x)=tan(4x)\tan{\left(4 x \right)} = \tan{\left(4 x \right)}
- Yes
so, the function
is
odd