Mister Exam

Integral of tg(4*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  tan(4*x) dx
 |             
/              
0              
01tan(4x)dx\int\limits_{0}^{1} \tan{\left(4 x \right)}\, dx
Integral(tan(4*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(4x)u = \cos{\left(4 x \right)}.

      Then let du=4sin(4x)dxdu = - 4 \sin{\left(4 x \right)} dx and substitute du4- \frac{du}{4}:

      (14u)du\int \left(- \frac{1}{4 u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1udu=1udu4\int \frac{1}{u}\, du = - \frac{\int \frac{1}{u}\, du}{4}

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        So, the result is: log(u)4- \frac{\log{\left(u \right)}}{4}

      Now substitute uu back in:

      log(cos(4x))4- \frac{\log{\left(\cos{\left(4 x \right)} \right)}}{4}

    Method #2

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)4cos(u)du\int \frac{\sin{\left(u \right)}}{4 \cos{\left(u \right)}}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)cos(u)du=sin(u)cos(u)du4\int \frac{\sin{\left(u \right)}}{\cos{\left(u \right)}}\, du = \frac{\int \frac{\sin{\left(u \right)}}{\cos{\left(u \right)}}\, du}{4}

        1. Let u=cos(u)u = \cos{\left(u \right)}.

          Then let du=sin(u)dudu = - \sin{\left(u \right)} du and substitute du- du:

          (1u)du\int \left(- \frac{1}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            1udu=1udu\int \frac{1}{u}\, du = - \int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)- \log{\left(u \right)}

          Now substitute uu back in:

          log(cos(u))- \log{\left(\cos{\left(u \right)} \right)}

        So, the result is: log(cos(u))4- \frac{\log{\left(\cos{\left(u \right)} \right)}}{4}

      Now substitute uu back in:

      log(cos(4x))4- \frac{\log{\left(\cos{\left(4 x \right)} \right)}}{4}

  3. Add the constant of integration:

    log(cos(4x))4+constant- \frac{\log{\left(\cos{\left(4 x \right)} \right)}}{4}+ \mathrm{constant}


The answer is:

log(cos(4x))4+constant- \frac{\log{\left(\cos{\left(4 x \right)} \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                   log(cos(4*x))
 | tan(4*x) dx = C - -------------
 |                         4      
/                                 
tan(4x)dx=Clog(cos(4x))4\int \tan{\left(4 x \right)}\, dx = C - \frac{\log{\left(\cos{\left(4 x \right)} \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2500025000
The answer [src]
  log(-cos(4))   pi*I
- ------------ - ----
       4          4  
log(cos(4))4iπ4- \frac{\log{\left(- \cos{\left(4 \right)} \right)}}{4} - \frac{i \pi}{4}
=
=
  log(-cos(4))   pi*I
- ------------ - ----
       4          4  
log(cos(4))4iπ4- \frac{\log{\left(- \cos{\left(4 \right)} \right)}}{4} - \frac{i \pi}{4}
-log(-cos(4))/4 - pi*i/4
Numerical answer [src]
1.6900933662682
1.6900933662682

    Use the examples entering the upper and lower limits of integration.