Integral of tg(4*x) dx
The solution
Detail solution
-
Rewrite the integrand:
tan(4x)=cos(4x)sin(4x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(4x).
Then let du=−4sin(4x)dx and substitute −4du:
∫(−4u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−4∫u1du
-
The integral of u1 is log(u).
So, the result is: −4log(u)
Now substitute u back in:
−4log(cos(4x))
Method #2
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)sin(u)du=4∫cos(u)sin(u)du
-
Let u=cos(u).
Then let du=−sin(u)du and substitute −du:
∫(−u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(u))
So, the result is: −4log(cos(u))
Now substitute u back in:
−4log(cos(4x))
-
Add the constant of integration:
−4log(cos(4x))+constant
The answer is:
−4log(cos(4x))+constant
The answer (Indefinite)
[src]
/
| log(cos(4*x))
| tan(4*x) dx = C - -------------
| 4
/
∫tan(4x)dx=C−4log(cos(4x))
The graph
log(-cos(4)) pi*I
- ------------ - ----
4 4
−4log(−cos(4))−4iπ
=
log(-cos(4)) pi*I
- ------------ - ----
4 4
−4log(−cos(4))−4iπ
Use the examples entering the upper and lower limits of integration.