Mister Exam

Other calculators:


tan(4*x)

Limit of the function tan(4*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim tan(4*x)
x->0+        
limx0+tan(4x)\lim_{x \to 0^+} \tan{\left(4 x \right)}
Limit(tan(4*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-500500
One‐sided limits [src]
 lim tan(4*x)
x->0+        
limx0+tan(4x)\lim_{x \to 0^+} \tan{\left(4 x \right)}
0
00
= 1.12314206742663e-31
 lim tan(4*x)
x->0-        
limx0tan(4x)\lim_{x \to 0^-} \tan{\left(4 x \right)}
0
00
= -1.12314206742663e-31
= -1.12314206742663e-31
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx0tan(4x)=0\lim_{x \to 0^-} \tan{\left(4 x \right)} = 0
More at x→0 from the left
limx0+tan(4x)=0\lim_{x \to 0^+} \tan{\left(4 x \right)} = 0
limxtan(4x)=,\lim_{x \to \infty} \tan{\left(4 x \right)} = \left\langle -\infty, \infty\right\rangle
More at x→oo
limx1tan(4x)=tan(4)\lim_{x \to 1^-} \tan{\left(4 x \right)} = \tan{\left(4 \right)}
More at x→1 from the left
limx1+tan(4x)=tan(4)\lim_{x \to 1^+} \tan{\left(4 x \right)} = \tan{\left(4 \right)}
More at x→1 from the right
limxtan(4x)=,\lim_{x \to -\infty} \tan{\left(4 x \right)} = \left\langle -\infty, \infty\right\rangle
More at x→-oo
Numerical answer [src]
1.12314206742663e-31
1.12314206742663e-31
The graph
Limit of the function tan(4*x)