Area between lines
The teacher will be very surprised to see your correct solution 😉
What can it do?
- Detect intersection points of the curves
- Smart robot detect the contours and its regions and general regions, where we define curves, then the one calculate there areas. The robot do this via line intersection points
- Helps to find the area under (or between) plot curves via calculating integrals
- Support for Cartesian, parametric, and polar coordinates
Examples of curves
The above examples also contain:
-
the modulus or absolute value: absolute(x) or |x|
-
square roots sqrt(x),
cubic roots cbrt(x)
-
trigonometric functions:
sinus sin(x), cosine cos(x), tangent tan(x), cotangent ctan(x)
-
exponential functions and exponents exp(x)
-
inverse trigonometric functions:
arcsine asin(x), arccosine acos(x), arctangent atan(x),
arccotangent acot(x)
-
natural logarithms ln(x),
decimal logarithms log(x)
-
hyperbolic functions:
hyperbolic sine sh(x), hyperbolic cosine ch(x),
hyperbolic tangent and cotangent tanh(x), ctanh(x)
-
inverse hyperbolic functions:
hyperbolic arcsine asinh(x), hyperbolic arccosinus acosh(x),
hyperbolic arctangent atanh(x), hyperbolic arccotangent acoth(x)
-
other trigonometry and hyperbolic functions:
secant sec(x), cosecant csc(x), arcsecant asec(x),
arccosecant acsc(x), hyperbolic secant sech(x),
hyperbolic cosecant csch(x), hyperbolic arcsecant asech(x),
hyperbolic arccosecant acsch(x)
-
rounding functions:
round down floor(x), round up ceiling(x)
-
the sign of a number:
sign(x)
-
for probability theory:
the error function erf(x) (integral of probability),
Laplace function laplace(x)
-
Factorial of x:
x! or factorial(x)
-
Gamma function gamma(x)
-
Lambert's function LambertW(x)
-
Trigonometric integrals: Si(x),
Ci(x),
Shi(x),
Chi(x)
The insertion rules
The following operations can be performed
- 2*x
- - multiplication
- 3/x
- - division
- x^2
- - squaring
- x^3
- - cubing
- x^5
- - raising to the power
- x + 7
- - addition
- x - 6
- - subtraction
- Real numbers
- insert as 7.5, no 7,5
Constants
- pi
- - number Pi
- e
- - the base of natural logarithm
- i
- - complex number
- oo
- - symbol of infinity
Include inequalities in the region
In addition to curves, the region can be further bounded by specifying inequalities:
You can also find the area of the shape via double integral