Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • x^3-27x
  • x^2+4x-3
  • x^2/(4-x^2)
  • -x^2-4x+12
  • Identical expressions

  • -arctg((4x)/(one -x^ two))
  • minus arctg((4x) divide by (1 minus x squared ))
  • minus arctg((4x) divide by (one minus x to the power of two))
  • -arctg((4x)/(1-x2))
  • -arctg4x/1-x2
  • -arctg((4x)/(1-x²))
  • -arctg((4x)/(1-x to the power of 2))
  • -arctg4x/1-x^2
  • -arctg((4x) divide by (1-x^2))
  • Similar expressions

  • arctg((4x)/(1-x^2))
  • -arctg((4x)/(1+x^2))

Graphing y = -arctg((4x)/(1-x^2))

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
            / 4*x  \
f(x) = -atan|------|
            |     2|
            \1 - x /
$$f{\left(x \right)} = - \operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)}$$
f = -atan((4*x)/(1 - x^2))
The graph of the function
The domain of the function
The points at which the function is not precisely defined:
$$x_{1} = -1$$
$$x_{2} = 1$$
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$- \operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)} = 0$$
Solve this equation
The points of intersection with the axis X:

Numerical solution
$$x_{1} = 0$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to -atan((4*x)/(1 - x^2)).
$$- \operatorname{atan}{\left(\frac{0 \cdot 4}{1 - 0^{2}} \right)}$$
The result:
$$f{\left(0 \right)} = 0$$
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$- \frac{\frac{8 x^{2}}{\left(1 - x^{2}\right)^{2}} + \frac{4}{1 - x^{2}}}{\frac{16 x^{2}}{\left(1 - x^{2}\right)^{2}} + 1} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$- \frac{8 x \left(- \frac{4 x^{2}}{x^{2} - 1} + 3 + \frac{16 \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 1\right)^{2} \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)} = 0$$
Solve this equation
The roots of this equation
$$x_{1} = 0$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -1$$
$$x_{2} = 1$$

$$\lim_{x \to -1^-}\left(- \frac{8 x \left(- \frac{4 x^{2}}{x^{2} - 1} + 3 + \frac{16 \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 1\right)^{2} \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)}\right) = -0.5$$
$$\lim_{x \to -1^+}\left(- \frac{8 x \left(- \frac{4 x^{2}}{x^{2} - 1} + 3 + \frac{16 \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 1\right)^{2} \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)}\right) = -0.5$$
- limits are equal, then skip the corresponding point
$$\lim_{x \to 1^-}\left(- \frac{8 x \left(- \frac{4 x^{2}}{x^{2} - 1} + 3 + \frac{16 \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 1\right)^{2} \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)}\right) = 0.5$$
$$\lim_{x \to 1^+}\left(- \frac{8 x \left(- \frac{4 x^{2}}{x^{2} - 1} + 3 + \frac{16 \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 1\right)^{2} \left(\frac{16 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1\right)}\right) = 0.5$$
- limits are equal, then skip the corresponding point

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[0, \infty\right)$$
Convex at the intervals
$$\left(-\infty, 0\right]$$
Vertical asymptotes
Have:
$$x_{1} = -1$$
$$x_{2} = 1$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(- \operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)}\right) = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = 0$$
$$\lim_{x \to \infty}\left(- \operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)}\right) = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = 0$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of -atan((4*x)/(1 - x^2)), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(- \frac{\operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
$$\lim_{x \to \infty}\left(- \frac{\operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$- \operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)} = \operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)}$$
- No
$$- \operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)} = - \operatorname{atan}{\left(\frac{4 x}{1 - x^{2}} \right)}$$
- No
so, the function
not is
neither even, nor odd