The points at which the function is not precisely defined: x1=3
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0 so we need to solve the equation: 9x−31=0 Solve this equation Solution is not found, it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0: substitute x = 0 to 9^(1/(x - 3)). 9−31 The result: f(0)=333 The point:
(0, 3^(1/3)/3)
Extrema of the function
In order to find the extrema, we need to solve the equation dxdf(x)=0 (the derivative equals zero), and the roots of this equation are the extrema of this function: dxdf(x)= the first derivative −(x−3)29x−31log(9)=0 Solve this equation Solutions are not found, function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this dx2d2f(x)=0 (the second derivative equals zero), the roots of this equation will be the inflection points for the specified function graph: dx2d2f(x)= the second derivative (x−3)39x−31(2+x−3log(9))log(9)=0 Solve this equation The roots of this equation x1=3−log(3) You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function: Points where there is an indetermination: x1=3
x→3−lim(x−3)39x−31(2+x−3log(9))log(9)=0 x→3+lim(x−3)39x−31(2+x−3log(9))log(9)=∞ - the limits are not equal, so x1=3 - is an inflection point
Сonvexity and concavity intervals: Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points: Concave at the intervals [3−log(3),∞) Convex at the intervals (−∞,3−log(3)]
Vertical asymptotes
Have: x1=3
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo x→−∞lim9x−31=1 Let's take the limit so, equation of the horizontal asymptote on the left: y=1 x→∞lim9x−31=1 Let's take the limit so, equation of the horizontal asymptote on the right: y=1
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of 9^(1/(x - 3)), divided by x at x->+oo and x ->-oo x→−∞lim(x9x−31)=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the right x→∞lim(x9x−31)=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x). So, check: 9x−31=9−x−31 - No 9x−31=−9−x−31 - No so, the function not is neither even, nor odd