The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0 so we need to solve the equation: log(xsin(x)+1)=0 Solve this equation The points of intersection with the axis X:
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0: substitute x = 0 to log(1 + sqrt(x*sin(x))). log(0sin(0)+1) The result: f(0)=0 The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation dxdf(x)=0 (the derivative equals zero), and the roots of this equation are the extrema of this function: dxdf(x)= the first derivative x(xsin(x)+1)sin(x)xsin(x)(2xcos(x)+2sin(x))=0 Solve this equation The roots of this equation x1=−26.7409160147873 x2=−89.5465575382492 x3=73.8409691490209 x4=−39.295350981473 x5=70.69997803861 x6=−2.02875783811043 x7=−64.4181717218392 x8=−20.469167402741 x9=−61.2773745335697 x10=26.7409160147873 x11=61.2773745335697 x12=−98.9702722883957 x13=−83.2642147040886 x14=−51.855560729152 x15=−86.4053708116885 x16=54.9960525574964 x17=−92.687771772017 x18=−58.1366632448992 x19=−4.91318043943488 x20=23.6042847729804 x21=48.7152107175577 x22=17.3363779239834 x23=95.8290108090195 x24=−70.69997803861 x25=33.0170010333572 x26=−36.1559664195367 x27=−54.9960525574964 x28=76.9820093304187 x29=80.1230928148503 x30=−76.9820093304187 x31=64.4181717218392 x32=−23.6042847729804 x33=−80.1230928148503 x34=98.9702722883957 x35=14.2074367251912 x36=42.4350618814099 x37=51.855560729152 x38=7.97866571241324 x39=−33.0170010333572 x40=−67.5590428388084 x41=58.1366632448992 x42=11.085538406497 x43=29.8785865061074 x44=92.687771772017 x45=67.5590428388084 x46=−45.57503179559 x47=−73.8409691490209 x48=−11.085538406497 x49=−14.2074367251912 x50=−48.7152107175577 x51=86.4053708116885 x52=−17.3363779239834 x53=20.469167402741 x54=45.57503179559 x55=−29.8785865061074 x56=4.91318043943488 x57=−7.97866571241324 x58=−42.4350618814099 x59=2.02875783811043 x60=83.2642147040886 x61=89.5465575382492 x62=−95.8290108090195 x63=39.295350981473 The values of the extrema at the points:
Intervals of increase and decrease of the function: Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from: The function has no minima Maxima of the function at points: x63=−26.7409160147873 x63=−89.5465575382492 x63=−39.295350981473 x63=70.69997803861 x63=−2.02875783811043 x63=−64.4181717218392 x63=−20.469167402741 x63=26.7409160147873 x63=−83.2642147040886 x63=−51.855560729152 x63=−58.1366632448992 x63=95.8290108090195 x63=−70.69997803861 x63=33.0170010333572 x63=76.9820093304187 x63=−76.9820093304187 x63=64.4181717218392 x63=14.2074367251912 x63=51.855560729152 x63=7.97866571241324 x63=−33.0170010333572 x63=58.1366632448992 x63=−45.57503179559 x63=−14.2074367251912 x63=20.469167402741 x63=45.57503179559 x63=−7.97866571241324 x63=2.02875783811043 x63=83.2642147040886 x63=89.5465575382492 x63=−95.8290108090195 x63=39.295350981473 Decreasing at intervals (−∞,−95.8290108090195] Increasing at intervals [95.8290108090195,∞)
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
True
Let's take the limit so, equation of the horizontal asymptote on the left: y=x→−∞limlog(xsin(x)+1)
True
Let's take the limit so, equation of the horizontal asymptote on the right: y=x→∞limlog(xsin(x)+1)
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of log(1 + sqrt(x*sin(x))), divided by x at x->+oo and x ->-oo
True
Let's take the limit so, inclined asymptote equation on the left: y=xx→−∞limxlog(xsin(x)+1)
True
Let's take the limit so, inclined asymptote equation on the right: y=xx→∞limxlog(xsin(x)+1)
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x). So, check: log(xsin(x)+1)=log(xsin(x)+1) - Yes log(xsin(x)+1)=−log(xsin(x)+1) - No so, the function is even