Mister Exam

Derivative of sin(x/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x\
sin|-|
   \4/
sin(x4)\sin{\left(\frac{x}{4} \right)}
sin(x/4)
Detail solution
  1. Let u=x4u = \frac{x}{4}.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddxx4\frac{d}{d x} \frac{x}{4}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 14\frac{1}{4}

    The result of the chain rule is:

    cos(x4)4\frac{\cos{\left(\frac{x}{4} \right)}}{4}

  4. Now simplify:

    cos(x4)4\frac{\cos{\left(\frac{x}{4} \right)}}{4}


The answer is:

cos(x4)4\frac{\cos{\left(\frac{x}{4} \right)}}{4}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
   /x\
cos|-|
   \4/
------
  4   
cos(x4)4\frac{\cos{\left(\frac{x}{4} \right)}}{4}
The second derivative [src]
    /x\ 
-sin|-| 
    \4/ 
--------
   16   
sin(x4)16- \frac{\sin{\left(\frac{x}{4} \right)}}{16}
The third derivative [src]
    /x\ 
-cos|-| 
    \4/ 
--------
   64   
cos(x4)64- \frac{\cos{\left(\frac{x}{4} \right)}}{64}
The graph
Derivative of sin(x/4)