/3*x*log(sin(x))\ |---------------| \ 4 / -----------------*x 3
((((3*x)*log(sin(x)))/4)/3)*x
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
So, the result is:
To find :
The derivative of the constant is zero.
Now plug in to the quotient rule:
Now simplify:
The answer is:
/3*x*log(sin(x))\ |---------------| /log(sin(x)) x*cos(x)\ \ 4 / x*|----------- + --------| + ----------------- \ 4 4*sin(x)/ 3
/ / 2 \ \ | | cos (x)| 2*cos(x)| 2*x*cos(x) 2*log(sin(x)) - x*|x*|1 + -------| - --------| + ---------- | | 2 | sin(x) | sin(x) \ \ sin (x)/ / ----------------------------------------------------------- 4
/ 2 \ / 2 \ | cos (x)| 6*cos(x) | cos (x)| / 2*x*cos(x)\ - 3*x*|1 + -------| + -------- + x*|1 + -------|*|-3 + ----------| | 2 | sin(x) | 2 | \ sin(x) / \ sin (x)/ \ sin (x)/ ------------------------------------------------------------------ 4