Mister Exam

Other calculators

Derivative of (3x*ln(sin(x)))/4/3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/3*x*log(sin(x))\  
|---------------|  
\       4       /  
-----------------*x
        3          
$$x \frac{\frac{1}{4} \cdot 3 x \log{\left(\sin{\left(x \right)} \right)}}{3}$$
((((3*x)*log(sin(x)))/4)/3)*x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the product rule:

        ; to find :

        1. Apply the power rule: goes to

        ; to find :

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of sine is cosine:

          The result of the chain rule is:

        The result is:

      So, the result is:

    To find :

    1. The derivative of the constant is zero.

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                             /3*x*log(sin(x))\
                             |---------------|
  /log(sin(x))   x*cos(x)\   \       4       /
x*|----------- + --------| + -----------------
  \     4        4*sin(x)/           3        
$$x \left(\frac{x \cos{\left(x \right)}}{4 \sin{\left(x \right)}} + \frac{\log{\left(\sin{\left(x \right)} \right)}}{4}\right) + \frac{\frac{1}{4} \cdot 3 x \log{\left(\sin{\left(x \right)} \right)}}{3}$$
The second derivative [src]
                  /  /       2   \           \             
                  |  |    cos (x)|   2*cos(x)|   2*x*cos(x)
2*log(sin(x)) - x*|x*|1 + -------| - --------| + ----------
                  |  |       2   |    sin(x) |     sin(x)  
                  \  \    sin (x)/           /             
-----------------------------------------------------------
                             4                             
$$\frac{- x \left(x \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) - \frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}}\right) + \frac{2 x \cos{\left(x \right)}}{\sin{\left(x \right)}} + 2 \log{\left(\sin{\left(x \right)} \right)}}{4}$$
The third derivative [src]
      /       2   \                /       2   \                  
      |    cos (x)|   6*cos(x)     |    cos (x)| /     2*x*cos(x)\
- 3*x*|1 + -------| + -------- + x*|1 + -------|*|-3 + ----------|
      |       2   |    sin(x)      |       2   | \       sin(x)  /
      \    sin (x)/                \    sin (x)/                  
------------------------------------------------------------------
                                4                                 
$$\frac{x \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \left(\frac{2 x \cos{\left(x \right)}}{\sin{\left(x \right)}} - 3\right) - 3 x \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) + \frac{6 \cos{\left(x \right)}}{\sin{\left(x \right)}}}{4}$$