Mister Exam

Other calculators

Derivative of e^(2sinx/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*sin(x)
 --------
    4    
E        
e2sin(x)4e^{\frac{2 \sin{\left(x \right)}}{4}}
E^((2*sin(x))/4)
Detail solution
  1. Let u=2sin(x)4u = \frac{2 \sin{\left(x \right)}}{4}.

  2. The derivative of eue^{u} is itself.

  3. Then, apply the chain rule. Multiply by ddx2sin(x)4\frac{d}{d x} \frac{2 \sin{\left(x \right)}}{4}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        So, the result is: 2cos(x)2 \cos{\left(x \right)}

      So, the result is: cos(x)2\frac{\cos{\left(x \right)}}{2}

    The result of the chain rule is:

    e2sin(x)4cos(x)2\frac{e^{\frac{2 \sin{\left(x \right)}}{4}} \cos{\left(x \right)}}{2}

  4. Now simplify:

    esin(x)2cos(x)2\frac{e^{\frac{\sin{\left(x \right)}}{2}} \cos{\left(x \right)}}{2}


The answer is:

esin(x)2cos(x)2\frac{e^{\frac{\sin{\left(x \right)}}{2}} \cos{\left(x \right)}}{2}

The graph
02468-8-6-4-2-10102.5-2.5
The first derivative [src]
        2*sin(x)
        --------
           4    
cos(x)*e        
----------------
       2        
e2sin(x)4cos(x)2\frac{e^{\frac{2 \sin{\left(x \right)}}{4}} \cos{\left(x \right)}}{2}
The second derivative [src]
                      sin(x)
                      ------
/   2              \    2   
\cos (x) - 2*sin(x)/*e      
----------------------------
             4              
(2sin(x)+cos2(x))esin(x)24\frac{\left(- 2 \sin{\left(x \right)} + \cos^{2}{\left(x \right)}\right) e^{\frac{\sin{\left(x \right)}}{2}}}{4}
The third derivative [src]
                                  sin(x)
                                  ------
/        2              \           2   
\-4 + cos (x) - 6*sin(x)/*cos(x)*e      
----------------------------------------
                   8                    
(6sin(x)+cos2(x)4)esin(x)2cos(x)8\frac{\left(- 6 \sin{\left(x \right)} + \cos^{2}{\left(x \right)} - 4\right) e^{\frac{\sin{\left(x \right)}}{2}} \cos{\left(x \right)}}{8}