Mister Exam

Other calculators


(3*tan(2*x)/sin(x)/4)

Derivative of (3*tan(2*x)/sin(x)/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/3*tan(2*x)\
|----------|
\  sin(x)  /
------------
     4      
1sin(x)3tan(2x)4\frac{\frac{1}{\sin{\left(x \right)}} 3 \tan{\left(2 x \right)}}{4}
((3*tan(2*x))/sin(x))/4
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=tan(2x)f{\left(x \right)} = \tan{\left(2 x \right)} and g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Rewrite the function to be differentiated:

          tan(2x)=sin(2x)cos(2x)\tan{\left(2 x \right)} = \frac{\sin{\left(2 x \right)}}{\cos{\left(2 x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=sin(2x)f{\left(x \right)} = \sin{\left(2 x \right)} and g(x)=cos(2x)g{\left(x \right)} = \cos{\left(2 x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Let u=2xu = 2 x.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 22

            The result of the chain rule is:

            2cos(2x)2 \cos{\left(2 x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Let u=2xu = 2 x.

          2. The derivative of cosine is negative sine:

            dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 22

            The result of the chain rule is:

            2sin(2x)- 2 \sin{\left(2 x \right)}

          Now plug in to the quotient rule:

          2sin2(2x)+2cos2(2x)cos2(2x)\frac{2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        Now plug in to the quotient rule:

        (2sin2(2x)+2cos2(2x))sin(x)cos2(2x)cos(x)tan(2x)sin2(x)\frac{\frac{\left(2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}\right) \sin{\left(x \right)}}{\cos^{2}{\left(2 x \right)}} - \cos{\left(x \right)} \tan{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}

      So, the result is: 3((2sin2(2x)+2cos2(2x))sin(x)cos2(2x)cos(x)tan(2x))sin2(x)\frac{3 \left(\frac{\left(2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}\right) \sin{\left(x \right)}}{\cos^{2}{\left(2 x \right)}} - \cos{\left(x \right)} \tan{\left(2 x \right)}\right)}{\sin^{2}{\left(x \right)}}

    So, the result is: 3((2sin2(2x)+2cos2(2x))sin(x)cos2(2x)cos(x)tan(2x))4sin2(x)\frac{3 \left(\frac{\left(2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}\right) \sin{\left(x \right)}}{\cos^{2}{\left(2 x \right)}} - \cos{\left(x \right)} \tan{\left(2 x \right)}\right)}{4 \sin^{2}{\left(x \right)}}

  2. Now simplify:

    3(3sin(x)+sin(3x))2(cos(4x)+1)\frac{3 \left(3 \sin{\left(x \right)} + \sin{\left(3 x \right)}\right)}{2 \left(\cos{\left(4 x \right)} + 1\right)}


The answer is:

3(3sin(x)+sin(3x))2(cos(4x)+1)\frac{3 \left(3 \sin{\left(x \right)} + \sin{\left(3 x \right)}\right)}{2 \left(\cos{\left(4 x \right)} + 1\right)}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
         2                         
6 + 6*tan (2*x)   3*cos(x)*tan(2*x)
--------------- - -----------------
    4*sin(x)               2       
                      4*sin (x)    
6tan2(2x)+64sin(x)3cos(x)tan(2x)4sin2(x)\frac{6 \tan^{2}{\left(2 x \right)} + 6}{4 \sin{\left(x \right)}} - \frac{3 \cos{\left(x \right)} \tan{\left(2 x \right)}}{4 \sin^{2}{\left(x \right)}}
The second derivative [src]
  //         2   \                                           /       2     \       \
  ||    2*cos (x)|              /       2     \            4*\1 + tan (2*x)/*cos(x)|
3*||1 + ---------|*tan(2*x) + 8*\1 + tan (2*x)/*tan(2*x) - ------------------------|
  ||        2    |                                                  sin(x)         |
  \\     sin (x) /                                                                 /
------------------------------------------------------------------------------------
                                      4*sin(x)                                      
3((1+2cos2(x)sin2(x))tan(2x)+8(tan2(2x)+1)tan(2x)4(tan2(2x)+1)cos(x)sin(x))4sin(x)\frac{3 \left(\left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \tan{\left(2 x \right)} + 8 \left(\tan^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)} - \frac{4 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cos{\left(x \right)}}{\sin{\left(x \right)}}\right)}{4 \sin{\left(x \right)}}
The third derivative [src]
  /                                                                           /         2   \                                                     \
  |                                                                           |    6*cos (x)|                                                     |
  |                                                                           |5 + ---------|*cos(x)*tan(2*x)                                     |
  |                  /         2   \                                          |        2    |                      /       2     \                |
  |  /       2     \ |    2*cos (x)|      /       2     \ /         2     \   \     sin (x) /                   24*\1 + tan (2*x)/*cos(x)*tan(2*x)|
3*|6*\1 + tan (2*x)/*|1 + ---------| + 16*\1 + tan (2*x)/*\1 + 3*tan (2*x)/ - ------------------------------- - ----------------------------------|
  |                  |        2    |                                                       sin(x)                             sin(x)              |
  \                  \     sin (x) /                                                                                                              /
---------------------------------------------------------------------------------------------------------------------------------------------------
                                                                      4*sin(x)                                                                     
3(6(1+2cos2(x)sin2(x))(tan2(2x)+1)(5+6cos2(x)sin2(x))cos(x)tan(2x)sin(x)+16(tan2(2x)+1)(3tan2(2x)+1)24(tan2(2x)+1)cos(x)tan(2x)sin(x))4sin(x)\frac{3 \left(6 \left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \left(\tan^{2}{\left(2 x \right)} + 1\right) - \frac{\left(5 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)} \tan{\left(2 x \right)}}{\sin{\left(x \right)}} + 16 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(3 \tan^{2}{\left(2 x \right)} + 1\right) - \frac{24 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cos{\left(x \right)} \tan{\left(2 x \right)}}{\sin{\left(x \right)}}\right)}{4 \sin{\left(x \right)}}
The graph
Derivative of (3*tan(2*x)/sin(x)/4)