/3*tan(2*x)\
|----------|
\ sin(x) /
------------
4
((3*tan(2*x))/sin(x))/4
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
To find :
The derivative of sine is cosine:
Now plug in to the quotient rule:
So, the result is:
So, the result is:
Now simplify:
The answer is:
2
6 + 6*tan (2*x) 3*cos(x)*tan(2*x)
--------------- - -----------------
4*sin(x) 2
4*sin (x)
// 2 \ / 2 \ \
|| 2*cos (x)| / 2 \ 4*\1 + tan (2*x)/*cos(x)|
3*||1 + ---------|*tan(2*x) + 8*\1 + tan (2*x)/*tan(2*x) - ------------------------|
|| 2 | sin(x) |
\\ sin (x) / /
------------------------------------------------------------------------------------
4*sin(x)
/ / 2 \ \
| | 6*cos (x)| |
| |5 + ---------|*cos(x)*tan(2*x) |
| / 2 \ | 2 | / 2 \ |
| / 2 \ | 2*cos (x)| / 2 \ / 2 \ \ sin (x) / 24*\1 + tan (2*x)/*cos(x)*tan(2*x)|
3*|6*\1 + tan (2*x)/*|1 + ---------| + 16*\1 + tan (2*x)/*\1 + 3*tan (2*x)/ - ------------------------------- - ----------------------------------|
| | 2 | sin(x) sin(x) |
\ \ sin (x) / /
---------------------------------------------------------------------------------------------------------------------------------------------------
4*sin(x)