Mister Exam

Other calculators


(3*tan(2*x)/sin(x)/4)
  • How to use it?

  • Derivative of:
  • Derivative of x^2-7*x Derivative of x^2-7*x
  • Derivative of ln(1-x) Derivative of ln(1-x)
  • Derivative of ln(-x) Derivative of ln(-x)
  • Derivative of ln(x+2) Derivative of ln(x+2)
  • Identical expressions

  • (three *tan(two *x)/sin(x)/ four)
  • (3 multiply by tangent of (2 multiply by x) divide by sinus of (x) divide by 4)
  • (three multiply by tangent of (two multiply by x) divide by sinus of (x) divide by four)
  • (3tan(2x)/sin(x)/4)
  • 3tan2x/sinx/4
  • (3*tan(2*x) divide by sin(x) divide by 4)
  • Similar expressions

  • (3*tan(2*x)/sinx/4)

Derivative of (3*tan(2*x)/sin(x)/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/3*tan(2*x)\
|----------|
\  sin(x)  /
------------
     4      
$$\frac{\frac{1}{\sin{\left(x \right)}} 3 \tan{\left(2 x \right)}}{4}$$
((3*tan(2*x))/sin(x))/4
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

        To find :

        1. The derivative of sine is cosine:

        Now plug in to the quotient rule:

      So, the result is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2                         
6 + 6*tan (2*x)   3*cos(x)*tan(2*x)
--------------- - -----------------
    4*sin(x)               2       
                      4*sin (x)    
$$\frac{6 \tan^{2}{\left(2 x \right)} + 6}{4 \sin{\left(x \right)}} - \frac{3 \cos{\left(x \right)} \tan{\left(2 x \right)}}{4 \sin^{2}{\left(x \right)}}$$
The second derivative [src]
  //         2   \                                           /       2     \       \
  ||    2*cos (x)|              /       2     \            4*\1 + tan (2*x)/*cos(x)|
3*||1 + ---------|*tan(2*x) + 8*\1 + tan (2*x)/*tan(2*x) - ------------------------|
  ||        2    |                                                  sin(x)         |
  \\     sin (x) /                                                                 /
------------------------------------------------------------------------------------
                                      4*sin(x)                                      
$$\frac{3 \left(\left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \tan{\left(2 x \right)} + 8 \left(\tan^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)} - \frac{4 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cos{\left(x \right)}}{\sin{\left(x \right)}}\right)}{4 \sin{\left(x \right)}}$$
The third derivative [src]
  /                                                                           /         2   \                                                     \
  |                                                                           |    6*cos (x)|                                                     |
  |                                                                           |5 + ---------|*cos(x)*tan(2*x)                                     |
  |                  /         2   \                                          |        2    |                      /       2     \                |
  |  /       2     \ |    2*cos (x)|      /       2     \ /         2     \   \     sin (x) /                   24*\1 + tan (2*x)/*cos(x)*tan(2*x)|
3*|6*\1 + tan (2*x)/*|1 + ---------| + 16*\1 + tan (2*x)/*\1 + 3*tan (2*x)/ - ------------------------------- - ----------------------------------|
  |                  |        2    |                                                       sin(x)                             sin(x)              |
  \                  \     sin (x) /                                                                                                              /
---------------------------------------------------------------------------------------------------------------------------------------------------
                                                                      4*sin(x)                                                                     
$$\frac{3 \left(6 \left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \left(\tan^{2}{\left(2 x \right)} + 1\right) - \frac{\left(5 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)} \tan{\left(2 x \right)}}{\sin{\left(x \right)}} + 16 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(3 \tan^{2}{\left(2 x \right)} + 1\right) - \frac{24 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cos{\left(x \right)} \tan{\left(2 x \right)}}{\sin{\left(x \right)}}\right)}{4 \sin{\left(x \right)}}$$
The graph
Derivative of (3*tan(2*x)/sin(x)/4)