/3*tan(2*x)\ |----------| \ sin(x) / ------------ 4
((3*tan(2*x))/sin(x))/4
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
To find :
The derivative of sine is cosine:
Now plug in to the quotient rule:
So, the result is:
So, the result is:
Now simplify:
The answer is:
2 6 + 6*tan (2*x) 3*cos(x)*tan(2*x) --------------- - ----------------- 4*sin(x) 2 4*sin (x)
// 2 \ / 2 \ \ || 2*cos (x)| / 2 \ 4*\1 + tan (2*x)/*cos(x)| 3*||1 + ---------|*tan(2*x) + 8*\1 + tan (2*x)/*tan(2*x) - ------------------------| || 2 | sin(x) | \\ sin (x) / / ------------------------------------------------------------------------------------ 4*sin(x)
/ / 2 \ \ | | 6*cos (x)| | | |5 + ---------|*cos(x)*tan(2*x) | | / 2 \ | 2 | / 2 \ | | / 2 \ | 2*cos (x)| / 2 \ / 2 \ \ sin (x) / 24*\1 + tan (2*x)/*cos(x)*tan(2*x)| 3*|6*\1 + tan (2*x)/*|1 + ---------| + 16*\1 + tan (2*x)/*\1 + 3*tan (2*x)/ - ------------------------------- - ----------------------------------| | | 2 | sin(x) sin(x) | \ \ sin (x) / / --------------------------------------------------------------------------------------------------------------------------------------------------- 4*sin(x)