Mister Exam

Other calculators


y=e^(-2x)sin((x)/(4))

Derivative of y=e^(-2x)sin((x)/(4))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2*x    /x\
E    *sin|-|
         \4/
e2xsin(x4)e^{- 2 x} \sin{\left(\frac{x}{4} \right)}
E^(-2*x)*sin(x/4)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(x4)f{\left(x \right)} = \sin{\left(\frac{x}{4} \right)} and g(x)=e2xg{\left(x \right)} = e^{2 x}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=x4u = \frac{x}{4}.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxx4\frac{d}{d x} \frac{x}{4}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 14\frac{1}{4}

      The result of the chain rule is:

      cos(x4)4\frac{\cos{\left(\frac{x}{4} \right)}}{4}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2e2x2 e^{2 x}

    Now plug in to the quotient rule:

    (2e2xsin(x4)+e2xcos(x4)4)e4x\left(- 2 e^{2 x} \sin{\left(\frac{x}{4} \right)} + \frac{e^{2 x} \cos{\left(\frac{x}{4} \right)}}{4}\right) e^{- 4 x}

  2. Now simplify:

    (8sin(x4)+cos(x4))e2x4\frac{\left(- 8 \sin{\left(\frac{x}{4} \right)} + \cos{\left(\frac{x}{4} \right)}\right) e^{- 2 x}}{4}


The answer is:

(8sin(x4)+cos(x4))e2x4\frac{\left(- 8 \sin{\left(\frac{x}{4} \right)} + \cos{\left(\frac{x}{4} \right)}\right) e^{- 2 x}}{4}

The graph
02468-8-6-4-2-1010-500000000500000000
The first derivative [src]
                      /x\  -2*x
                   cos|-|*e    
     -2*x    /x\      \4/      
- 2*e    *sin|-| + ------------
             \4/        4      
2e2xsin(x4)+e2xcos(x4)4- 2 e^{- 2 x} \sin{\left(\frac{x}{4} \right)} + \frac{e^{- 2 x} \cos{\left(\frac{x}{4} \right)}}{4}
The second derivative [src]
/                 /x\\      
|           63*sin|-||      
|     /x\         \4/|  -2*x
|- cos|-| + ---------|*e    
\     \4/       16   /      
(63sin(x4)16cos(x4))e2x\left(\frac{63 \sin{\left(\frac{x}{4} \right)}}{16} - \cos{\left(\frac{x}{4} \right)}\right) e^{- 2 x}
The third derivative [src]
/         /x\          /x\\  -2*x
|- 488*sin|-| + 191*cos|-||*e    
\         \4/          \4//      
---------------------------------
                64               
(488sin(x4)+191cos(x4))e2x64\frac{\left(- 488 \sin{\left(\frac{x}{4} \right)} + 191 \cos{\left(\frac{x}{4} \right)}\right) e^{- 2 x}}{64}
The graph
Derivative of y=e^(-2x)sin((x)/(4))