Mister Exam

Other calculators


y=e^(-2x)sin((x)/(4))

Derivative of y=e^(-2x)sin((x)/(4))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2*x    /x\
E    *sin|-|
         \4/
$$e^{- 2 x} \sin{\left(\frac{x}{4} \right)}$$
E^(-2*x)*sin(x/4)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      /x\  -2*x
                   cos|-|*e    
     -2*x    /x\      \4/      
- 2*e    *sin|-| + ------------
             \4/        4      
$$- 2 e^{- 2 x} \sin{\left(\frac{x}{4} \right)} + \frac{e^{- 2 x} \cos{\left(\frac{x}{4} \right)}}{4}$$
The second derivative [src]
/                 /x\\      
|           63*sin|-||      
|     /x\         \4/|  -2*x
|- cos|-| + ---------|*e    
\     \4/       16   /      
$$\left(\frac{63 \sin{\left(\frac{x}{4} \right)}}{16} - \cos{\left(\frac{x}{4} \right)}\right) e^{- 2 x}$$
The third derivative [src]
/         /x\          /x\\  -2*x
|- 488*sin|-| + 191*cos|-||*e    
\         \4/          \4//      
---------------------------------
                64               
$$\frac{\left(- 488 \sin{\left(\frac{x}{4} \right)} + 191 \cos{\left(\frac{x}{4} \right)}\right) e^{- 2 x}}{64}$$
The graph
Derivative of y=e^(-2x)sin((x)/(4))