Mister Exam

Derivative of arctg(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /1\
atan|-|
    \x/
$$\operatorname{atan}{\left(\frac{1}{x} \right)}$$
atan(1/x)
The graph
The first derivative [src]
    -1     
-----------
 2 /    1 \
x *|1 + --|
   |     2|
   \    x /
$$- \frac{1}{x^{2} \left(1 + \frac{1}{x^{2}}\right)}$$
The second derivative [src]
  /         1     \
2*|1 - -----------|
  |     2 /    1 \|
  |    x *|1 + --||
  |       |     2||
  \       \    x //
-------------------
     3 /    1 \    
    x *|1 + --|    
       |     2|    
       \    x /    
$$\frac{2 \left(1 - \frac{1}{x^{2} \left(1 + \frac{1}{x^{2}}\right)}\right)}{x^{3} \left(1 + \frac{1}{x^{2}}\right)}$$
The third derivative [src]
  /          4              7     \
2*|-3 - ------------ + -----------|
  |                2    2 /    1 \|
  |      4 /    1 \    x *|1 + --||
  |     x *|1 + --|       |     2||
  |        |     2|       \    x /|
  \        \    x /               /
-----------------------------------
             4 /    1 \            
            x *|1 + --|            
               |     2|            
               \    x /            
$$\frac{2 \left(-3 + \frac{7}{x^{2} \left(1 + \frac{1}{x^{2}}\right)} - \frac{4}{x^{4} \left(1 + \frac{1}{x^{2}}\right)^{2}}\right)}{x^{4} \left(1 + \frac{1}{x^{2}}\right)}$$
The graph
Derivative of arctg(1/x)