atan(1) sin (4*x) --------------- x
/ atan(1) \ d |sin (4*x)| --|---------------| dx\ x /
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
Now simplify:
The answer is:
atan(1) atan(1) sin (4*x) 4*sin (4*x)*atan(1)*cos(4*x) - --------------- + ---------------------------------- 2 x*sin(4*x) x
/ / 2 2 \ \ atan(1) |1 | cos (4*x) cos (4*x)*atan(1)| 4*atan(1)*cos(4*x)| 2*sin (4*x)*|-- - 8*|1 + --------- - -----------------|*atan(1) - ------------------| | 2 | 2 2 | x*sin(4*x) | \x \ sin (4*x) sin (4*x) / / ------------------------------------------------------------------------------------------- x
/ / 2 2 \ / 2 2 2 2 \ \ | | cos (4*x) cos (4*x)*atan(1)| | 2*cos (4*x) atan (1)*cos (4*x) 3*cos (4*x)*atan(1)| | | 24*|1 + --------- - -----------------|*atan(1) 32*|2 - 3*atan(1) + ----------- + ------------------ - -------------------|*atan(1)*cos(4*x)| | | 2 2 | | 2 2 2 | | atan(1) | 3 \ sin (4*x) sin (4*x) / 12*atan(1)*cos(4*x) \ sin (4*x) sin (4*x) sin (4*x) / | 2*sin (4*x)*|- -- + ---------------------------------------------- + ------------------- + --------------------------------------------------------------------------------------------| | 3 x 2 sin(4*x) | \ x x *sin(4*x) / ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- x