Mister Exam

Other calculators


y=(sin4x)^arctg1/x

Derivative of y=(sin4x)^arctg1/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   atan(1)     
sin       (4*x)
---------------
       x       
$$\frac{\sin^{\operatorname{atan}{\left(1 \right)}}{\left(4 x \right)}}{x}$$
  /   atan(1)     \
d |sin       (4*x)|
--|---------------|
dx\       x       /
$$\frac{d}{d x} \frac{\sin^{\operatorname{atan}{\left(1 \right)}}{\left(4 x \right)}}{x}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     atan(1)             atan(1)                      
  sin       (4*x)   4*sin       (4*x)*atan(1)*cos(4*x)
- --------------- + ----------------------------------
          2                     x*sin(4*x)            
         x                                            
$$\frac{4 \sin^{\operatorname{atan}{\left(1 \right)}}{\left(4 x \right)} \cos{\left(4 x \right)} \operatorname{atan}{\left(1 \right)}}{x \sin{\left(4 x \right)}} - \frac{\sin^{\operatorname{atan}{\left(1 \right)}}{\left(4 x \right)}}{x^{2}}$$
The second derivative [src]
                  /       /       2           2             \                             \
     atan(1)      |1      |    cos (4*x)   cos (4*x)*atan(1)|           4*atan(1)*cos(4*x)|
2*sin       (4*x)*|-- - 8*|1 + --------- - -----------------|*atan(1) - ------------------|
                  | 2     |       2               2         |               x*sin(4*x)    |
                  \x      \    sin (4*x)       sin (4*x)    /                             /
-------------------------------------------------------------------------------------------
                                             x                                             
$$\frac{2 \left(- 8 \cdot \left(1 - \frac{\cos^{2}{\left(4 x \right)} \operatorname{atan}{\left(1 \right)}}{\sin^{2}{\left(4 x \right)}} + \frac{\cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \operatorname{atan}{\left(1 \right)} - \frac{4 \cos{\left(4 x \right)} \operatorname{atan}{\left(1 \right)}}{x \sin{\left(4 x \right)}} + \frac{1}{x^{2}}\right) \sin^{\operatorname{atan}{\left(1 \right)}}{\left(4 x \right)}}{x}$$
The third derivative [src]
                  /          /       2           2             \                                    /                     2            2       2             2             \                 \
                  |          |    cos (4*x)   cos (4*x)*atan(1)|                                    |                2*cos (4*x)   atan (1)*cos (4*x)   3*cos (4*x)*atan(1)|                 |
                  |       24*|1 + --------- - -----------------|*atan(1)                         32*|2 - 3*atan(1) + ----------- + ------------------ - -------------------|*atan(1)*cos(4*x)|
                  |          |       2               2         |                                    |                    2                2                     2          |                 |
     atan(1)      |  3       \    sin (4*x)       sin (4*x)    /           12*atan(1)*cos(4*x)      \                 sin (4*x)        sin (4*x)             sin (4*x)     /                 |
2*sin       (4*x)*|- -- + ---------------------------------------------- + ------------------- + --------------------------------------------------------------------------------------------|
                  |   3                         x                               2                                                          sin(4*x)                                          |
                  \  x                                                         x *sin(4*x)                                                                                                   /
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                              x                                                                                               
$$\frac{2 \cdot \left(\frac{32 \left(- 3 \operatorname{atan}{\left(1 \right)} + 2 - \frac{3 \cos^{2}{\left(4 x \right)} \operatorname{atan}{\left(1 \right)}}{\sin^{2}{\left(4 x \right)}} + \frac{\cos^{2}{\left(4 x \right)} \operatorname{atan}^{2}{\left(1 \right)}}{\sin^{2}{\left(4 x \right)}} + \frac{2 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \cos{\left(4 x \right)} \operatorname{atan}{\left(1 \right)}}{\sin{\left(4 x \right)}} + \frac{24 \cdot \left(1 - \frac{\cos^{2}{\left(4 x \right)} \operatorname{atan}{\left(1 \right)}}{\sin^{2}{\left(4 x \right)}} + \frac{\cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \operatorname{atan}{\left(1 \right)}}{x} + \frac{12 \cos{\left(4 x \right)} \operatorname{atan}{\left(1 \right)}}{x^{2} \sin{\left(4 x \right)}} - \frac{3}{x^{3}}\right) \sin^{\operatorname{atan}{\left(1 \right)}}{\left(4 x \right)}}{x}$$
The graph
Derivative of y=(sin4x)^arctg1/x