Mister Exam

Other calculators


arctg*1/x+arcctgx

Derivative of arctg*1/x+arcctgx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
atan(1)          
------- + acot(x)
   x             
$$\operatorname{acot}{\left(x \right)} + \frac{\operatorname{atan}{\left(1 \right)}}{x}$$
The graph
The first derivative [src]
    1      atan(1)
- ------ - -------
       2       2  
  1 + x       x   
$$- \frac{1}{x^{2} + 1} - \frac{\operatorname{atan}{\left(1 \right)}}{x^{2}}$$
The second derivative [src]
  /    x       atan(1)\
2*|--------- + -------|
  |        2       3  |
  |/     2\       x   |
  \\1 + x /           /
$$2 \left(\frac{x}{\left(x^{2} + 1\right)^{2}} + \frac{\operatorname{atan}{\left(1 \right)}}{x^{3}}\right)$$
The third derivative [src]
  /                  2              \
  |    1          4*x      3*atan(1)|
2*|--------- - --------- - ---------|
  |        2           3        4   |
  |/     2\    /     2\        x    |
  \\1 + x /    \1 + x /             /
$$2 \left(- \frac{4 x^{2}}{\left(x^{2} + 1\right)^{3}} + \frac{1}{\left(x^{2} + 1\right)^{2}} - \frac{3 \operatorname{atan}{\left(1 \right)}}{x^{4}}\right)$$
6-я производная [src]
    /        3                                   5  \
    |    16*x         3*x      3*atan(1)     16*x   |
240*|- --------- + --------- + --------- + ---------|
    |          5           4        7              6|
    |  /     2\    /     2\        x       /     2\ |
    \  \1 + x /    \1 + x /                \1 + x / /
$$240 \left(\frac{16 x^{5}}{\left(x^{2} + 1\right)^{6}} - \frac{16 x^{3}}{\left(x^{2} + 1\right)^{5}} + \frac{3 x}{\left(x^{2} + 1\right)^{4}} + \frac{3 \operatorname{atan}{\left(1 \right)}}{x^{7}}\right)$$
The graph
Derivative of arctg*1/x+arcctgx