The first derivative
[src]
1 atan(1)
- ------ - -------
2 2
1 + x x
$$- \frac{1}{x^{2} + 1} - \frac{\operatorname{atan}{\left(1 \right)}}{x^{2}}$$
The second derivative
[src]
/ x atan(1)\
2*|--------- + -------|
| 2 3 |
|/ 2\ x |
\\1 + x / /
$$2 \left(\frac{x}{\left(x^{2} + 1\right)^{2}} + \frac{\operatorname{atan}{\left(1 \right)}}{x^{3}}\right)$$
The third derivative
[src]
/ 2 \
| 1 4*x 3*atan(1)|
2*|--------- - --------- - ---------|
| 2 3 4 |
|/ 2\ / 2\ x |
\\1 + x / \1 + x / /
$$2 \left(- \frac{4 x^{2}}{\left(x^{2} + 1\right)^{3}} + \frac{1}{\left(x^{2} + 1\right)^{2}} - \frac{3 \operatorname{atan}{\left(1 \right)}}{x^{4}}\right)$$
/ 3 5 \
| 16*x 3*x 3*atan(1) 16*x |
240*|- --------- + --------- + --------- + ---------|
| 5 4 7 6|
| / 2\ / 2\ x / 2\ |
\ \1 + x / \1 + x / \1 + x / /
$$240 \left(\frac{16 x^{5}}{\left(x^{2} + 1\right)^{6}} - \frac{16 x^{3}}{\left(x^{2} + 1\right)^{5}} + \frac{3 x}{\left(x^{2} + 1\right)^{4}} + \frac{3 \operatorname{atan}{\left(1 \right)}}{x^{7}}\right)$$