Mister Exam

Other calculators

Derivative of ln(1+x)/(1-x)+2arctg1/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(1 + x)   2*atan(1)
---------- + ---------
  1 - x          x    
$$\frac{\log{\left(x + 1 \right)}}{1 - x} + \frac{2 \operatorname{atan}{\left(1 \right)}}{x}$$
log(1 + x)/(1 - x) + (2*atan(1))/x
Detail solution
  1. Differentiate term by term:

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        The result of the chain rule is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       1          log(1 + x)   2*atan(1)
--------------- + ---------- - ---------
(1 + x)*(1 - x)           2         2   
                   (1 - x)         x    
$$\frac{1}{\left(1 - x\right) \left(x + 1\right)} + \frac{\log{\left(x + 1 \right)}}{\left(1 - x\right)^{2}} - \frac{2 \operatorname{atan}{\left(1 \right)}}{x^{2}}$$
The second derivative [src]
        1           2*log(1 + x)           2           4*atan(1)
----------------- - ------------ + ----------------- + ---------
       2                     3                     2        3   
(1 + x) *(-1 + x)    (-1 + x)      (1 + x)*(-1 + x)        x    
$$\frac{1}{\left(x - 1\right) \left(x + 1\right)^{2}} + \frac{2}{\left(x - 1\right)^{2} \left(x + 1\right)} - \frac{2 \log{\left(x + 1 \right)}}{\left(x - 1\right)^{3}} + \frac{4 \operatorname{atan}{\left(1 \right)}}{x^{3}}$$
The third derivative [src]
  12*atan(1)           6                   3                    2           6*log(1 + x)
- ---------- - ----------------- - ------------------ - ----------------- + ------------
       4                       3          2         2          3                     4  
      x        (1 + x)*(-1 + x)    (1 + x) *(-1 + x)    (1 + x) *(-1 + x)    (-1 + x)   
$$- \frac{2}{\left(x - 1\right) \left(x + 1\right)^{3}} - \frac{3}{\left(x - 1\right)^{2} \left(x + 1\right)^{2}} - \frac{6}{\left(x - 1\right)^{3} \left(x + 1\right)} + \frac{6 \log{\left(x + 1 \right)}}{\left(x - 1\right)^{4}} - \frac{12 \operatorname{atan}{\left(1 \right)}}{x^{4}}$$