Mister Exam

Derivative of y=ln^5arctg1/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5         
log (atan(1))
-------------
      x      
$$\frac{\log{\left(\operatorname{atan}{\left(1 \right)} \right)}^{5}}{x}$$
  /   5         \
d |log (atan(1))|
--|-------------|
dx\      x      /
$$\frac{d}{d x} \frac{\log{\left(\operatorname{atan}{\left(1 \right)} \right)}^{5}}{x}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the power rule: goes to

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    5          
-log (atan(1)) 
---------------
        2      
       x       
$$- \frac{\log{\left(\operatorname{atan}{\left(1 \right)} \right)}^{5}}{x^{2}}$$
The second derivative [src]
     5         
2*log (atan(1))
---------------
        3      
       x       
$$\frac{2 \log{\left(\operatorname{atan}{\left(1 \right)} \right)}^{5}}{x^{3}}$$
The third derivative [src]
      5         
-6*log (atan(1))
----------------
        4       
       x        
$$- \frac{6 \log{\left(\operatorname{atan}{\left(1 \right)} \right)}^{5}}{x^{4}}$$
The graph
Derivative of y=ln^5arctg1/x