Mister Exam

Derivative of sqrt(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ___
   / 1 
  /  - 
\/   x 
1x\sqrt{\frac{1}{x}}
sqrt(1/x)
Detail solution
  1. Let u=1xu = \frac{1}{x}.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx1x\frac{d}{d x} \frac{1}{x}:

    1. Apply the power rule: 1x\frac{1}{x} goes to 1x2- \frac{1}{x^{2}}

    The result of the chain rule is:

    12x21x- \frac{1}{2 x^{2} \sqrt{\frac{1}{x}}}


The answer is:

12x21x- \frac{1}{2 x^{2} \sqrt{\frac{1}{x}}}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
     ___ 
    / 1  
-  /  -  
 \/   x  
---------
   2*x   
1x2x- \frac{\sqrt{\frac{1}{x}}}{2 x}
The second derivative [src]
      ___
     / 1 
3*  /  - 
  \/   x 
---------
      2  
   4*x   
31x4x2\frac{3 \sqrt{\frac{1}{x}}}{4 x^{2}}
The third derivative [src]
        ___
       / 1 
-15*  /  - 
    \/   x 
-----------
       3   
    8*x    
151x8x3- \frac{15 \sqrt{\frac{1}{x}}}{8 x^{3}}
The graph
Derivative of sqrt(1/x)