Mister Exam

Other calculators

Sum of series x^(-1/3)



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \      1  
  \   -----
  /   3 ___
 /    \/ x 
/___,      
n = 1      
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{x}}$$
Sum(x^(-1/3), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\sqrt[3]{x}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\sqrt[3]{x}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
  oo 
-----
3 ___
\/ x 
$$\frac{\infty}{\sqrt[3]{x}}$$
oo/x^(1/3)

    Examples of finding the sum of a series