Mister Exam

Other calculators:


x^(-1/3)

Limit of the function x^(-1/3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       1  
 lim -----
x->oo3 ___
     \/ x 
$$\lim_{x \to \infty} \frac{1}{\sqrt[3]{x}}$$
Limit(x^(-1/3), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{\sqrt[3]{x}} = 0$$
$$\lim_{x \to 0^-} \frac{1}{\sqrt[3]{x}} = - \infty \left(-1\right)^{\frac{2}{3}}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{\sqrt[3]{x}} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{\sqrt[3]{x}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{\sqrt[3]{x}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{\sqrt[3]{x}} = 0$$
More at x→-oo
The graph
Limit of the function x^(-1/3)