Mister Exam

Other calculators


(1+n)/(1+n^2)

Sum of series (1+n)/(1+n^2)



=

The solution

You have entered [src]
  oo        
____        
\   `       
 \    1 + n 
  \   ------
  /        2
 /    1 + n 
/___,       
n = 1       
n=1n+1n2+1\sum_{n=1}^{\infty} \frac{n + 1}{n^{2} + 1}
Sum((1 + n)/(1 + n^2), (n, 1, oo))
The radius of convergence of the power series
Given number:
n+1n2+1\frac{n + 1}{n^{2} + 1}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=n+1n2+1a_{n} = \frac{n + 1}{n^{2} + 1}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((n+1)((n+1)2+1)(n+2)(n2+1))1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left(\left(n + 1\right)^{2} + 1\right)}{\left(n + 2\right) \left(n^{2} + 1\right)}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.504
Numerical answer
The series diverges
The graph
Sum of series (1+n)/(1+n^2)

    Examples of finding the sum of a series