Mister Exam

Other calculators

Sum of series 1/(x(x+2))



=

The solution

You have entered [src]
  oo           
 ___           
 \  `          
  \       1    
   )  ---------
  /   x*(x + 2)
 /__,          
n = 1          
n=11x(x+2)\sum_{n=1}^{\infty} \frac{1}{x \left(x + 2\right)}
Sum(1/(x*(x + 2)), (n, 1, oo))
The radius of convergence of the power series
Given number:
1x(x+2)\frac{1}{x \left(x + 2\right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1x(x+2)a_{n} = \frac{1}{x \left(x + 2\right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
    oo   
---------
x*(2 + x)
x(x+2)\frac{\infty}{x \left(x + 2\right)}
oo/(x*(2 + x))

    Examples of finding the sum of a series