Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1
---------*(-2 - 2*x)
x*(x + 2)
--------------------
x*(x + 2)
/ 1 + x 1 + x /1 1 \\
2*|-1 + ----- + ----- + (1 + x)*|- + -----||
\ x 2 + x \x 2 + x//
--------------------------------------------
2 2
x *(2 + x)
/ /1 1 \ /1 1 \ \
| (1 + x)*|- + -----| (1 + x)*|- + -----| |
|4 4 3*(1 + x) 3*(1 + x) /1 1 1 \ \x 2 + x/ \x 2 + x/ 4*(1 + x)|
2*|- + ----- - --------- - --------- - 2*(1 + x)*|-- + -------- + ---------| - ------------------- - ------------------- - ---------|
|x 2 + x 2 2 | 2 2 x*(2 + x)| x 2 + x x*(2 + x)|
\ x (2 + x) \x (2 + x) / /
-------------------------------------------------------------------------------------------------------------------------------------
2 2
x *(2 + x)