Mister Exam

Derivative of 1/(x(x+2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
x*(x + 2)
$$\frac{1}{x \left(x + 2\right)}$$
1/(x*(x + 2))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    1               
---------*(-2 - 2*x)
x*(x + 2)           
--------------------
     x*(x + 2)      
$$\frac{\frac{1}{x \left(x + 2\right)} \left(- 2 x - 2\right)}{x \left(x + 2\right)}$$
The second derivative [src]
  /     1 + x   1 + x           /1     1  \\
2*|-1 + ----- + ----- + (1 + x)*|- + -----||
  \       x     2 + x           \x   2 + x//
--------------------------------------------
                 2        2                 
                x *(2 + x)                  
$$\frac{2 \left(\left(x + 1\right) \left(\frac{1}{x + 2} + \frac{1}{x}\right) + \frac{x + 1}{x + 2} - 1 + \frac{x + 1}{x}\right)}{x^{2} \left(x + 2\right)^{2}}$$
The third derivative [src]
  /                                                                                    /1     1  \           /1     1  \            \
  |                                                                            (1 + x)*|- + -----|   (1 + x)*|- + -----|            |
  |4     4     3*(1 + x)   3*(1 + x)             /1       1           1    \           \x   2 + x/           \x   2 + x/   4*(1 + x)|
2*|- + ----- - --------- - --------- - 2*(1 + x)*|-- + -------- + ---------| - ------------------- - ------------------- - ---------|
  |x   2 + x        2              2             | 2          2   x*(2 + x)|            x                   2 + x          x*(2 + x)|
  \                x        (2 + x)              \x    (2 + x)             /                                                        /
-------------------------------------------------------------------------------------------------------------------------------------
                                                              2        2                                                             
                                                             x *(2 + x)                                                              
$$\frac{2 \left(- 2 \left(x + 1\right) \left(\frac{1}{\left(x + 2\right)^{2}} + \frac{1}{x \left(x + 2\right)} + \frac{1}{x^{2}}\right) - \frac{\left(x + 1\right) \left(\frac{1}{x + 2} + \frac{1}{x}\right)}{x + 2} - \frac{3 \left(x + 1\right)}{\left(x + 2\right)^{2}} + \frac{4}{x + 2} - \frac{\left(x + 1\right) \left(\frac{1}{x + 2} + \frac{1}{x}\right)}{x} - \frac{4 \left(x + 1\right)}{x \left(x + 2\right)} + \frac{4}{x} - \frac{3 \left(x + 1\right)}{x^{2}}\right)}{x^{2} \left(x + 2\right)^{2}}$$