Mister Exam

Other calculators


((-1)^(n+1))/(2^n)

Sum of series ((-1)^(n+1))/(2^n)



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \        n + 1
  \   (-1)     
   )  ---------
  /        n   
 /        2    
/___,          
n = 1          
n=1(1)n+12n\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n + 1}}{2^{n}}
Sum((-1)^(n + 1)/2^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
(1)n+12n\frac{\left(-1\right)^{n + 1}}{2^{n}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(1)n+1a_{n} = \left(-1\right)^{n + 1}
and
x0=2x_{0} = -2
,
d=1d = -1
,
c=0c = 0
then
1R=~(2+limn1)\frac{1}{R} = \tilde{\infty} \left(-2 + \lim_{n \to \infty} 1\right)
Let's take the limit
we find
False

R=0R = 0
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.000.75
The answer [src]
1/3
13\frac{1}{3}
1/3
Numerical answer [src]
0.333333333333333333333333333333
0.333333333333333333333333333333
The graph
Sum of series ((-1)^(n+1))/(2^n)

    Examples of finding the sum of a series