Mister Exam

Other calculators


(1000^n)/n!

Sum of series (1000^n)/n!



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \        n
  \   1000 
  /   -----
 /      n! 
/___,      
n = 1      
n=11000nn!\sum_{n=1}^{\infty} \frac{1000^{n}}{n!}
Sum(1000^n/factorial(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
1000nn!\frac{1000^{n}}{n!}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1n!a_{n} = \frac{1}{n!}
and
x0=1000x_{0} = -1000
,
d=1d = 1
,
c=0c = 0
then
R=~(1000+limn(n+1)!n!)R = \tilde{\infty} \left(-1000 + \lim_{n \to \infty} \left|{\frac{\left(n + 1\right)!}{n!}}\right|\right)
Let's take the limit
we find
R=R = \infty
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50400000000000000000
The answer [src]
      1000
-1 + e    
1+e1000-1 + e^{1000}
-1 + exp(1000)
Numerical answer [src]
0.e+434
0.e+434
The graph
Sum of series (1000^n)/n!

    Examples of finding the sum of a series