Mister Exam

Other calculators


(1000^n)/n!
  • How to use it?

  • Sum of series:
  • x^n/n
  • 1/(4n^2-1) 1/(4n^2-1)
  • (1000^n)/n! (1000^n)/n!
  • 2n 2n
  • Identical expressions

  • (one thousand ^n)/n!
  • (1000 to the power of n) divide by n!
  • (one thousand to the power of n) divide by n!
  • (1000n)/n!
  • 1000n/n!
  • 1000^n/n!
  • (1000^n) divide by n!

Sum of series (1000^n)/n!



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \        n
  \   1000 
  /   -----
 /      n! 
/___,      
n = 1      
$$\sum_{n=1}^{\infty} \frac{1000^{n}}{n!}$$
Sum(1000^n/factorial(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1000^{n}}{n!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n!}$$
and
$$x_{0} = -1000$$
,
$$d = 1$$
,
$$c = 0$$
then
$$R = \tilde{\infty} \left(-1000 + \lim_{n \to \infty} \left|{\frac{\left(n + 1\right)!}{n!}}\right|\right)$$
Let's take the limit
we find
$$R = \infty$$
The rate of convergence of the power series
The answer [src]
      1000
-1 + e    
$$-1 + e^{1000}$$
-1 + exp(1000)
Numerical answer [src]
0.e+434
0.e+434
The graph
Sum of series (1000^n)/n!

    Examples of finding the sum of a series