Mister Exam

Other calculators


1/n*(n+1)(n+2)

Sum of series 1/n*(n+1)(n+2)



=

The solution

You have entered [src]
  oo               
 ___               
 \  `              
  \   n + 1        
   )  -----*(n + 2)
  /     n          
 /__,              
n = 1              
$$\sum_{n=1}^{\infty} \frac{n + 1}{n} \left(n + 2\right)$$
Sum(((n + 1)/n)*(n + 2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{n + 1}{n} \left(n + 2\right)$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\left(n + 1\right) \left(n + 2\right)}{n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 3\right)}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer
The series diverges
The graph
Sum of series 1/n*(n+1)(n+2)

    Examples of finding the sum of a series