Mister Exam

Other calculators


(n-1)/(n(n+1)(n+2))

Sum of series (n-1)/(n(n+1)(n+2))



=

The solution

You have entered [src]
  oo                   
 ___                   
 \  `                  
  \         n - 1      
   )  -----------------
  /   n*(n + 1)*(n + 2)
 /__,                  
n = 1                  
n=1n1n(n+1)(n+2)\sum_{n=1}^{\infty} \frac{n - 1}{n \left(n + 1\right) \left(n + 2\right)}
Sum((n - 1)/(((n*(n + 1))*(n + 2))), (n, 1, oo))
The radius of convergence of the power series
Given number:
n1n(n+1)(n+2)\frac{n - 1}{n \left(n + 1\right) \left(n + 2\right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=n1n(n+1)(n+2)a_{n} = \frac{n - 1}{n \left(n + 1\right) \left(n + 2\right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((n+3)n1n2)1 = \lim_{n \to \infty}\left(\frac{\left(n + 3\right) \left|{n - 1}\right|}{n^{2}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.00.2
The answer [src]
1/4
14\frac{1}{4}
1/4
Numerical answer [src]
0.250000000000000000000000000000
0.250000000000000000000000000000
The graph
Sum of series (n-1)/(n(n+1)(n+2))

    Examples of finding the sum of a series