Given number:
$$n \frac{3 \left(- \frac{5 g}{2} + \left(5 h - p\right)\right)}{2}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = n \left(- \frac{15 g}{4} + \frac{15 h}{2} - \frac{3 p}{2}\right)$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{n}{n + 1}\right)$$
Let's take the limitwe find
True
False